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Abstract

Effects of rotation on onset of convection during plane-front directional solidification of Pb-Sn
and the pseudobinary system mercury cadmium telluride (Hg,_.,Cd,Te), and on dendritic
solidification of Pb-Sn have been studied by means of linear stability analysis.

Incorporating Coriolis and centrifugal accelerations into the momentum equation of Coriell ez
al., we find that under realistic processing conditions, a large degree of stabilization can be
achieved using modest rotation rates for both Pb-Sn and mercury cadmium telluride (Hg, ,Cd, Te).

At a growth velocity of S p/sec and nominal liquid-side temperature gradient of 200 K/cm in
Pb-Sn, rotation at 500 rpm results in a hundredfold increase in the critical Sn concentration, Large
increases in the maximum allowable growth velocity at fixed melt composition are also attainable
with modest rotation rates. The effect is amplified under conditions of reduced gravitational
acceleration.

For Hg, ,Cd, Te, we have also studied the nonrotating case. The key differences are due to
the existence of a composition range for Hg,_,Cd,Te in which the melt density has a local
maximum as a function of temperature. When the melt solidifies by cooling from below, the liquid
density may initially increase with distance above the interface, before ultimately decreasing as the
melt temperature increases above the value at which the local density maximum occurs. In contrast
to the Pb-Sn case where density depends monotonically on temperature and composition, for Hg, .

We identify the predicted stabilization with the Taylor-Proudman mechanism by which
rotation inhibits thermal convection in a single-component fluid heated from below. In a binary
liquid undergoing solidification, rotation inhibits the onset of buoyancy-driven convection, and has
no effect on the short-wavelength morphological instability.

At large growth velocities, the plane-front interface between liquid and solid becomes unstable
with respect to a morphological instability and solidification occurs dendritically, with a mushy
zone of dendrites and interdendritic fluid separating the solid from the melt. For the Pb-Sn system,
rotation substantially suppresses the onset of convection in the mushy zone and in the overlying
liquid, holding open the promise that rotation can suppress freckling and other macrosegregation
defects.
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1. Introduction

interface. However, in real systems, several instabilities can cause departures from the nominally
steady and one-dimensional plane-front case.

First, the solid-liquid interface may be subject to the so-called morphological instability, which
has been studied extensively since the early work of Mullins and Sekerka (1964). This instability
causes deformation of the nominally planar interface, ultimately leading to formation of a two-
phase "mushy zone" of dendrites and interdendritic liquid. Departures from one-dimensionality
and steadiness in the mushy zone result in nonuniform distribution of solute in the solidified
material,

solute are different, as doubly-diffusive convection. :
Convective and morphological instabilities in a binary alloy undergoing directional

solidification were first studied by Coriell er al. (1980) using a linear stability analysis. These

authors showed that motion may occur due to either morphological or convective instabilities, and

discussions of the effects of convection on plane-front and dendritic solidification have been given
recently by Worster (1991), Davis (1990), Huppert (1990), Polezhaev (1988), and Miiller (1988).
Buoyancy-driven convection in the melt has been shown to be the dominant factor in the
formation of "freckles"”, a macrosegregation defect deleterious to the mechanical properties of
directionally solidified alloys. The formation and characterization of freckles in nickel-based
superalloys were first studied experimentally by Giamei and Kear ( 1970). Poirier ez al. (1981)
investigated macrosegregation in electroslag ingots, showed that convection in the melt results in
freckling in the solidified material, and suggested that rotation might reduce freckling. Ridder er al.
(1981) studied the effects of fluid flow on macrosegregation in nominally axisymmetric ingots and
showed that melt convection results in macrosegregation in the mushy zone. In a theoretical study

temperature and solute distributions. A recent review of the effects of buoyancy-driven convection
on macrosegregation in binary and quasi-binary nonmetallic systems has been given by Miiller
(1988).

One means by which the onset of convection can be inhibited in a density-stratified fluid layer
is to subject the layer to a magnetic field aligned parallel or perpendicular to the stratification
(Miiller 1988). For horizontal Pb-Sn layers solidified from below at several growth velocities,
Coriell ez al. (1980) showed theoretically that the critical Sn concentration above which instability
occurs can be increased an order of magnitude by applying a vertical magnetic field of the order of
one tesla. This technique requires that the liquid be an electrical conductor, and so is applicable to
metallic alloys, semiconductors, and aqueous solutions.

Macrosegregation might also be controlled by increasing or decreasing the magnitude of the
gravitational acceleration or changing its direction. Alexander er al. (1989) and Heinrich et al.
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than that of normal gravity.

Both gravity and an external magnetic field are body forces which act on the liquid. As
opposed to contact forces such as pressure, viscous stress, and surface tension, which act on the
surfaces of a fluid element, body forces act on the mass of a fluid element. Hence, their local

correspond to the centripetal and Coriolis accelerations, for which the terms pPLO2XQXr and
2p Qxu, respectively, are added to the momentum equation. Here, r is the position vector
measured from the axis of rotation, u is the local fluid velocity relative to the noninertial reference
frame, and p, is the local density of the liquid.

Previous theoretical studies of the effects of rotation on the onset of buoyancy-driven
convection have been restricted to cases where no solidification occurs. For a horizontally
unbounded layer of a single-component fluid, Chandrasekhar (1961), Chandrasekhar and Elbert

various aspect ratios was considered in an early series of papers by Homsy and Hudson (1969,
1971a-c, 1972). More recently, for a single-component fluid Weber et al. (1990) have computed
buqyaqcy-driven flows equivalent to those which can be driven by a temperature gradient
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included or omitted. Weber ez al. found excellent agreement between experiment and computation
when the Coriolis acceleration was included.

For a binary fluid, Pearlstein (1981) has shown that the Coriolis acceleration can either
stabilize or destabilize a horizontally unbounded layer, depending on the values of the Prandtl and
Schmidt numbers, the dimensionless rotation rate (expressed in terms of a Taylor number), and the
dimensionless temperature or solute gradient (expressed in terms of thermal and solutal Rayleigh
numbers). Other work concernin g the effect of rotation on doubly-diffusive convection in bin
fluids (with no phase change) has been reported by Sengupta and Gupta ( 1971), Masuda (1978),
Antoranz and Velarde (1978, 1979), Schmitt and Lambert (1979), Riahi (1983), Worthem ez al.
(1983), and Bhattacharjee (1988a-c).

Even though our analysis is limited to horizontally unbounded layers, work for single-
component fluids not undergoing phase change (Homsy and Hudson 1971a; Biihler and Oertel
1982) suggests that for ﬁxcg finite aspect ratios (ratio of mold radius to height) our predictions will
be qualitatively correct if QZ R g (a Froude number, where R, is the mold radius) is sufficiently
small. For the onset of thermaf convection in rotating water or mercury layers heated from below,

experimental work for finite aspect ratios (Nakagawa and Frenzen 1955; Fultz and Nakagawa
1955; Goroff 1960) clearly demonstrates the potential of the Coriolis acceleration to suppress
buoyancy-driven convection in a rotatin g fluid.

In this work, we use linear stability analysis to study the effect of the Coriolis acceleration on
convective and morphological instability for alloys which solidify with a nominally planar
interface. This work serves to identify the mechanism by which Coriolis effects affect the onset of

shown in the 1992 University of Illinois Ph.D. Dissertation of Alparslan Oztekin (currently at the
MIT Department of Chemical Engineering), in a paper co-authored with Dr. Oztekin (Mezrallurgical
Transactions 23B, 73-80, 1992), and in preprints of two papers submitted to Journal of Crystal
Growth, copies of which are included in this report. Other papers are in preparation, and will be
submitted in due course.

2. Effect of Rotation on Plane-front Solidification of Pb-Sn

Earlier work by Coriell et al. (1980) established that plane-front solidification of Pb-Sn alloys
can become unstable with respect to either a buoyancy-driven convective mode or a morphological
mode. We have considered the effect of rotation on the onset of instability in this System.

To test our code, we first considered the nonrotating case, and compared our results to those
of Coriell ez al. The neutral curves were generally similar to those shown by Coriell et al. The

combination of c_ and V), as opposed to the shooting technique of Coriell er al., which
individually computes the temporal eigenvalues by a one-point iteration scheme.

Our results are described in a paper in Metallurgical Transactions (23B, 73-80, 1992). We
present our principal results in terms of stability boundaries in the V-c., plane, where V,is the

any value of V|, clearly indicating the inhibitory effect of rotation on the onset of buoyancy-driven
convection. We note that for V, = 5 sec™!, rotation at Qq = 500 rpm increases by slightly more
than two orders of magnitude relative to the nonrotating case the critical Sn concentration above
which the plane-front solution becomes unstable. We further note that the morphological branch is
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unaffected by rotation, whereas as Qo increases, the value of V| at which the onset of instability
shifts from the convective branch to the morphological branch decreases from about 40 usec-lin
the nonrotating case to about 27 psec! for Qy = 500 rpm. ~

For each value of Q, we see a local minimum near V=1 psec!, with the minimum shifting
to smaller growth velocities and becoming relatively more shallow as Qp increases. We note that
the maximum relative stabilization by rotation occurs near the local minimum, and that for Q, =
500 rpm, the critical bulk concentration of Sn is increased more than a hundredfold. Although
Coriell er al. (1980) noted a local minimum in the stability boundary near V, = 1 p sec-! in the
nonrotating case for the largest gravitational acceleration considered, they offered no explanation
for its existence. This minimum is a consequence of the fact that as V; — 0, the concentration
gradient G = (k-1)psc,,Vi/(kp yD) vanishes. As the temperature gradient is independent of c_ and
is stabilizing, the critical value of C. must ultimately increase as V, - 0. (Of course, the weight
percent of the solute, c_, cannot exceed 100). As c_, must initially decrease with increasing V|,
there must be a local minimum on the convective branch before ¢ can increase to join up with the
morphological branch of the stability boundary. This nonmonotonic dependence of ¢, on V; can
be interpreted in terms of the existence of four critical values of V| for certain values of c_, (We
note that for sufficiently large Vi, ¢, ultimately increases on the morphological branch (Davis
1990).

The remarkable stabilization obtainable at low growth rates (more than a hundredfold increase
in the critical value of ¢_ at V,=1psec! can be achieved by rotating the layer at 500 rpm for the
two values of G; considered) is undoubtedly due to the well-known Taylor-Proudman mechanism,
described by Chandrasekhar (1961). According to the Taylor-Proudman theorem, steady motion
parallel to the axis of rotation in a uniformly rotating inviscid fluid is prohibited at any nonzero
rotation rate. If this theorem were strictly applicable to a viscous fluid, the onset of steady
convection would be prohibited, since the flow in convection cells must have a vertical component.
Instead, in a viscous fluid, one sees an inhibition of the onset of steady convection, with the degree
of inhibition (expressed here as an increase in ¢,,) increasing with ;. That the onset of oscillatory
convection is hardly affected is due to the fact that the Taylor-Proudman theorem applies only to
steady flows. It is also not surprising that the morphological instability is unaffected by rotation.
The morphological instability occurs at very short wavelengths, so the motion is almost
perpendicular to the solidification front (i.e., aligned with the axis of rotation). Hence, the Coriolis
acceleration does not sensibly affect the morphological instability.

The relatively modest rotation rates required to significantly inhibit the onset of convection in
the Pb-Sn system make the proposed method an interesting candidate for a program of laboratory
experiments. Experiments might be conducted using a completely filled cylindrical mold,
thermally insulated on the vertical surface, and mounted axisymmetrically on a rotating horizontal

have a nearly paraboloidal free surface, on which the elevation above the point on the axis of
rotation is Az = Q2 r2/(2g). Although this configuration is consistent with rigid-body rotation, it
also leads to a nearly paraboloidal solid-melt interface. For high rotation rates or large mold
radius, this will in turn lead to significant radial variations in the solidified alloy. Also, cooling at
the radial boundary leads to a radial temperature gradient, which in turn leads to significant
centrifugal effects. Experiments of the type proposed above were initiated some time ago by
Copley (private communication) for the crystallization of ammonium chloride from aqueous
solution,

Finally, we note that for many binary systems, plane-front solidification does not occur at
practical growth velocities, and that the morphological instability results in dendritic solidification.
In this case, rotation might also suppress buoyancy-driven convection in the melt and interdendritic
liquid; this is discussed in §6.
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3. Combined Effects of Rotation and Reduced Gravity on Stability of
Plane-Front Solidification of Pb-Sn

The combined effects of rotation and reduced gravity on the stability of plane-front
solidification were studied for dilute Pb-Sn alloys. The onset of buoyancy-driven convection is
suppressed to a far greater degree than would be expected on the basis of earlier work, in which
suppression by the individual effects of reduced gravity (Coriell er al. 1980) and uniform rotation
(Oztekin and Pearlstein 1992) was demonstrated.

Our results are presented in terms of the effects of rotation and reduced gravity on the onset of
convection in molten Pb-Sn undergoing solidification by cooling from below. The individual
effects of reduced gravity have been considered by Coriell et al. ( 1980), who showed for several
combinations of the liquid-side temperature gradient G; and gravity level 0 < {=g/g, < I that the
stability boundary in the V|-c_. plane consists of morpho[Iogical and convective branc?les, and that
the convective branch is stabilized by reducing £ (i.e., at any V,, the critical value of c_ on the
convective branch increases as g decreases). Oztekin and Pearlstein (1992) showed for =1 (full
gravity) with G| = 200 K cm-1 and Qo =0, 100, 200, 300, and 500 rpm (their Figure 1) that
rotation stabilizes the convective branch (i-e., for any V/, the critical value of C., on the convective
branch increases with Qo). For example, with V| =5 (1 'sec-1, the critical Sn concentration above
which plane-front solidification is unstable is more than two orders of magnitude higher at Q, =

0 rpm than in the nonrotating case. They also showed that the morphological branch was
unaffected by rotation, and that as Q, increases, the value of V| at which the onset of instability
shifts from the convective branch to the morphological branch decreases from about 40 K sec! in
the nonrotating case to about 27 H sec~! for Q4 = 500 rpm.

For G =200 K cm-! and Q, = 0, we find that stability boundaries for £=1,102 104, and
10-6, each consist of some portion of the morphological branch (c’, decreasing with increasing V)
joined to a convective branch. The critical value on the convective branch increases with
decreasing (, showing the inhibitory effects of reduced gravity on the onset of buoyancy-driven
convection. Note that for V,=1psec], reducing the gravity level to 10-8g, increases the critical
Sn concentration at which plane-front solidification becomes unstable by about four orders of
magnitude relative to the full gravity case. We also note that the stabilizing effect of reduced
gravity is relatively less at lower solidification rates than at higher solidification rate. As expected,
the morphological instability branch is not affected by the gravity level, whereas as € decreases, the
value of V| at which the onset of instability shifts from the convective to the morphological branch
decreases from about 40 1 sec-! for § =110 about 1.3 u sec-! for £=10-¢.

For the same liquid-side temperature gradient (G =200 K cm-1), we find that for small

TR

rotation rates (Qp = 5 rpm) the dcgree_ of stabilization achievable at each gravity level is

full gravity case, the critical Sn concentration is increased more at lower solidification rates than at
higher solidification rates. For C=102and Qy=5 1pm, the critical concentration is increased by
about an order of magnitude for Vi =0.5 usec-!, however, the inhibition of convection for
Vi =0.5 usec-1 is very small. In contrast to the rotating case, the inhibition of the onset of
convection by reduced gravity is larger at higher rotation rate. Hence the decrease of the
solidification rate at which the onset of instability shifts from convective branch to the
morphological branch by reduced gravity is considerably more than the decrease by the rotation.
Forrg = 10-2 and Q = 25 rpm, the critical Sn concentration on the convective branch is more than
three orders of magnitude higher than for the nonrotating normal-gravity case at all solidification
rates.

For G| =200 K cm-, stability boundaries for { = 1 and 2=0,{=1andQy=5 mpm, { =
10~4 and (%0 =0,and { =104 and Q, = 5 rpm show that rotation more effectively inhibits the
onset of convection in the reduced gravity case than in the full gravity case.

The remarkable stabilization obtainable at low growth rates (more than a hundredfold increase
in the critical value of C.at Vi =1 p sec-! can be achieved by rotating the layer at 500 rpm for the
two values of G| considered) is again undoubtedly due to the well-known Taylor-Proudman
mechanism
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Moreover, when the density varies nonmonotonically with temperature, there can exist a critical
value of the dimensionless solidification rate 7, such that for y > y_ plane-front solidification is
unstable for all C_. In this case, for Y <Y, there is a finite range of C_ for which plane-front
solidification is stable. This latter result differs from the normal case, for which at all
dimensionless solidification rates, plane-front solidification is stable for all values of C. lying
below some critical value. The stability boundaries and neutral curves, differing qualitatively from
those for the normal case, are discussed in terms of the existence adjacent to the liquid-solid
interface of a sublayer in which the thermal stratification is destabilizing. Results are presented for
solutions of CdTe in HgTe, of considerable importance due to the wide use of this pseudobinary
system in the fabrication of electro-optic detectors.

We have computed stability boundaries in the ¥-C... plane for four values of the dimensionless
liquid-side temperature gradient T = Gpk o/[Lo(gDp)13. The stability boundary consists of some
portion of the morphological branch joined to a convective branch. ForI" = 8.2 x 104, above the

rate y. = 2.70 x 10~ (V, = 1.02 H/sec) at which the convective and morphological branches
intersect, there is no stable range of bulk mole fraction C_. For "= 1.64 x 10-3, the stable region
in the y-C_ plane is analogous to that for ' = 8.2 x 10~4. The morphological branch has shifted to
the right and the convective branch has shifted slightly downward. Their intersection occurs at a
higher y (y, = 5.61 x 104, V= 2.12 p/sec), and the stable region is larger. Increasing I still more
leads to further enlargement of the stable region and larger values of Y. forI'=3.28 x 10-3 and
6.56 x 10-3 (G = 100 and 200 K/em), respectively.

The qualitative differences between these neutral curves and stability boundaries and those
characteristic of the normal case in which density varies linearly with temperature and composition
(e.g., the Pb-Sn results of Coriell et al. 1980) lead us to consider how the equation of state affects
or alters the mechanism by which the onset of motion occurs during directional solidification of a
binary liquid cooled from below.

We note that the mechanism responsible for the morphological instability is insensitive to the
net density stratification in the liquid, and is insensitive to variations of temperature and
composition outside a relatively thin layer adjacent to the interface. This is evident from a
comparison of the neutral curves and stability boundaries for the present case to those for Pb-Sn
(Coriell er al. 1980; Oztekin and Pearlstein 1992).

On the other hand, the onset of buoyancy-driven convection depends strongly on the nature of

For binary liquids such as Hg, ,Cd, Te for which the dependence of density on temperature or
solute mole fraction is not monotonic, solidification by cooling from below for some combinations
of the bulk mole fraction, liquid-side temperature gradient, and solidification rate can lead to a

configuration in which there exists adjacent to the interface a sublayer in which the positive
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upward. Hence, the initial displacement engenders a restoring force, which can result in overshoot
of the parcel's initial (equilibrium) position. Such a configuration is in the "diffusive" regime, and
the motion is said to be "overstable", with the temporally growing oscillatory parcel displacements
leading to the oscillatory onset of convection,

The difference between the mechanisms by which the onset of motion occurs in confi gurations
in which the temperature gradient is everywhere stabilizing, and in those in which temperature is
destabilizing in a sublayer adjacent to the interface, is manifested in qualitative differences between
the neutral curves, and hence the stability boundaries, for the Pb-Sn and Hg, ,Cd, Te systems.

The most notable feature of the neutral curves in the present case is that the onset of buoyancy-

It .

driven convective instability is associated with an oscillatory mode, unlike the normal (e.g., Pb-

sufficiently dilute solutions (i.e., C.. lying below the minima of the morphological and steady
convective neutral curves).

These features of the neutral curves have profound consequences for the stability boundaries
in the y-C_ plane. For Hg,_,Cd,Te, plane-front solidification can be unstable at all solidification
rates if the bulk mole fraction is chosen sufficiently low, as shown in §5. This is because the
effect of a destabilizing temperature gradient in the sublayer adjacent to the interface becomes
stronger as the bulk mole fraction decreases (due to a more prominent density maximum as the
composition approaches pure HgTe), and the stabilizing effect of the solute gradient diminishes
(because it is proportional to C_). On the other hand, in Pb-Sn directionally solidified by cooling
from below, plane-front solidification is stable for any solidification rate and liquid-side
temperature gradient if the solute bulk mole fraction is sufficiently low (Coriell er al. 1980; Oztekin
and Pearlstein 1992).

For Hg, ,Cd, Te, plane-front solidification can be unstable at all values of the bulk mole
fraction (less than C_ = 0.2) if the solidification rate exceeds a critical value y,. For sufficiently
small values of C_, plane-front solidification is unstable with respect to the onset of overstable

buoyancy-driven convection, because the stabilizing influence of the bottom-heavy solute

sublayer adjacent to the interface. For sufficiently large values of C_, the confi guration is unstable
with respect to the morphological instability. Asy approaches ¥y, from below, the stable region is
"pinched" from below and above until at Ye it finally disappears. This situation differs from that
for Pb-Sn, for which plane-front solidification is stable in a region bounded above by the
morphological and convective portions of the stability boundaries.

In a single-component fluid with an unstably stratified layer overlying or underlying a stably
stratified region, convective motion is typically localized in the unstably stratified layer, but may
penetrate into the adjacent stable region. In his early analysis of the onset of thermal convection in
a water layer with the temperature maintained at 0°C at the bottom and in excess of 4°C at the top,
Veronis (1963) showed that convection oceurs in the unstably stratified region and penetrates into
the stably stratified region as well. He determined the extent of penetration for different ratios of -
the stably stratified layer thickness to the total layer thickness. He also found that convection in the
stably stratified region is viscously coupled to the more vigorous motion in the unstable layer.
Walton (1982) and Zangrando and Bertram (1985) have considered a doubly-diffusive fluid layer
with a uniform vertical temperature gradient and a nonuniform vertical solute gradient. Both of
these studies show the disturbances to be localized about the neighborhood of the critical depth at
which the salinity gradient reaches its minimum value. In our work, when the liquid-solid



| w1

=
=-
-




G

n
W

I

i

(i

s i

It

il |

LRI

G

il

—

u

-

interface is adjacent to a sublayer in which the temperature gradient is destabilizing, the
disturbances associated with the oscillatory onset of buoyancy-driven convection are largely
confined to that thermally unstably stratified sublayer.

As discussed above, the oscillatory onset of buoyancy-driven convection and the localization
of the disturbances are associated with the occurrence of a sublayer in which the temperature
gradient is destabilizing. Hence, the results should be expected to apply qualitatively to the
solidification of other binary or multicomponent liquids in which (ap,_/aT)(BT,/az) changes sign
within the layer.

Our results demonstrate that nonmonotonic variation of density with temperature can have
dramatic qualitative effects on the onset of instability in an unbounded horizontal fluid layer
undergoing plane-front solidification. The existence of a sublayer in which the thermal
stratification is destabilizing should also have important consequences for the convection which

computations of Apanovich and Ljumkis (1991) for zone melting of Hg, Cd, Te use an equation
of state in which the density of Hg, ,Cd, Te is independent of temperature fora CdTe mole fraction
0.13.

5. Effects of Rotation on Stability of Plane-Fron‘t Solidification of
Hgy ,Cd,Te

Hg,_ Cd,Te melts there can exist a critical bulk CdTe mole fraction X,, below which plane-front
soliditication is unstable at all solidification rates Vi, whereas in the normal case Plane-front
solidification at any X, is linearly stable for sufficiently small V Moreover, for Hg,_ Cd Te there
can exist a critical solidification rate V)" such that for Vi< Vi pllane-front solidification is unstable
forall x_. Our results show that modest rates of uniform rotation can significantly suppress the
onset of buoyancy-driven convection for the H Cd,Te system, and that rotation can
substantially increase the critical solidification rate Vi éeyond which plane-front solidification is
unstable for all bulk CdTe mole fractions. '

The stability boundaries consist of some portion of the morphological branch joined to an
oscillatory convective branch. For G L=50K cm", the stability boundaries for Q°= 0, 25, 50,
and 100 rpm show that above the morphological branch, disturbances grow for some range of
wavenumber a and plane-front solidification is unstable. Similarly, below the convective branch
appropriate to each rotation rate shown, disturbances grow for some range of a. However,
between the morphological branch and the convective branch associated with each rotation rate
(i.e., for x% < X, < X&), disturbances decay for all wavenumbers and plane-front solidification is
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solidification rate (denoted by V") at which the convective and morphological branches intersect,
there is no stable range of bulk CdTe mole fraction X... Thus, plane-front solidification is unstable
at all bulk CdTe mole fractions for sufficiently high solidification rates. The critical solidification
rate Vy" at which the morphological and convective branches intersect occurs at higher x_ with
increasing rotation rate Q. The critical value V" is increased by more than a factor of ten at
Q,=100 rpm relative to the nonrotating case. We also note that the convective branch has a
relatively shallow local minimum near Vy=1psec™, the location of which depends only weakly
on Q.. Thus, for a given rotation rate, operation at the solidification rate corresponding to this
local minimum allows plane-front solidification to be conducted stably at the lowest value of X,.
For G, =25K ecm™ and Q =0 and 100 rpm, the morphological branch is shifted to the left,
reducing thc range of solidification rates and bulk mole fractions for which plane-front
solidification is stable, as expected on the basis of the results of Coriell et al. (1980) for Pb-Sn

We note that decreasing the temperature gradient has very little effect on the onset of convection in
a nonrotating layer, but reduces the ran ge of stable bulk CdTe mole fractions by more than twofold
for a layer rotating at 100 pm. The critical value of V, is higher by more than a factor of five at
Q_ =100 rpm relative to the nonrotating case, aIthougfl the degree of stabilization is less than the
factor of ten predicted for G =25K cm L Although the reduction in X, has very little effect on
the critical value of V; at which the morphological and convective stability boundaries intersect in
the nonrotating case, i‘or Q,=100 rpm the critical value of V| decreases by a factor of three when
the temperature gradient is reduced. .

As discussed for the Pb-Sn case (Oztekin and Pearlstein 1992), at each value of Q9 the onset
of morphological instability occurs via a short wavelength (large wavenumber) instability, while
convection sets in via disturbances with relatively longer wavelengths. In the following section
this point is discussed in the context of the mechanism by which rotation inhibits the onset of
convection.

During directional solidification of binary alloys cooled from below and characterized by a
linear equation of state, with rejection of a light solute at the liquid-solid interface (e.g., Pb-Sn),
the vertical temperature and solute gradients are stabilizing and destabilizing, respectively,
throughout the liquid layer. In the Pb-Sn system, the onset of buoyancy-driven convection occurs
via monotonically growing disturbances, as shown by Coriell er al. (1980). However, for the
pseudobinary Hg, ,Cd Te system, the CdTe gradient is everywhere stabilizing, and adjacent to
the liquid-solid interface there can exist a sublayer in which the thermal stratification is
destabilizing. In this system, the onset of convection occurs via oscillatory disturbances. We note
that the system is unstable at the indicated values of G, for all Vi when x_ is sufficiently small,
corresponding to the absence of a stably stratified thin liquid layer adjacent to the interface for small
xeo " - 2t

For Pb-Sn alloys we have shown (Oztekin and Pearlstein 1992) that significant suppression of
the onset of buoyancy-driven convection occurs at modest rotation rates, and is due to the well-
known Taylor-Proudman mechanism. Again, the morphological instability is unaffected by
rotation since it occurs at very short wavelengths, with the motion nearly perpendicular to the
solidification front (i.e., aligned with the rotation axis).

6. Effect of Rotation on Stability of Dendritic Solidification of
Pb-Sn

We have assessed the stability of the one-dimensional dendritic solution for Pb-Sn melts
undergoing solidiﬁcatiqn by cooling from below. The two-phase mushy zone is modeled as a

porous medium with anisotropic permeability. The local porosity, as well as the locations of the
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solute concentration). A division of the parameter space according to the existence and stability of
solutions corresponding to plane-front and dendritic solidification is presented and discussed for

composition. As the imposed temperature gradient decreases, the critical solidification rate
decreases, and the dendritic solution is stabilized.

The thermophysical properties of the liquid and solid
(1980) at reference conditions corresponding to pure lead at its melting point. (The diffusivity of

as a porous medium with anisotropic permeability. The local porosity, as well as the locations of
the boundaries separating the solid from the mushy zone and the mushy zone from the liquid, are
taken to be dynamical variables. The one-dimensional basic state, computed using a
thermodynamically self-consistent nonlinear model of solidification, exists for only some

of G, V,,and C_, and for the liquid the lengthscale is the diffusion length, which in this case is
3.75x 1073 cm.) The volume fraction is largest (¢ = 1) at the liquid/mushy-zone interface, and
decreases monotonically to a nonzero value at the mushy-zone/solid interface. These results show
that as C_, increases, the porosity distribution becomes more linear and its value at the mushy-
zone/solid interface increases monotonically. The mushy-zone thickness (Hp, =0.527 cm) for C_
= 0.5 is much smaller (so that the liquid in the porous medium is more mobile) than for C_ = 0.1,
0.2, or 0.35.

Fory =3.24 x 10-? (V,= 100 pusec™), 1.62 x 10-2 (Vi=50psec!), 9.72x 103 (v, =30 4
sec™!), respectively, H,, is a strong function of T and C.., depends relatively weakly on Y, and
assumes a maximum near C_ = 0.2 for each combination of solidification rate and temperature
gradient. This maximum occurs because the composition difference AC. = C,(1) - Cnh(0)
between the top and bottom of the mushy zone reaches a maximum near C. =r6.2, and the mushy-
zone composition varies almost linearly with z. As AC,, decreases to zero as C.. approaches Ce,
H,, asymptotically decreases to zero. The decrease of H., as C,_ decreases to the left of the
maximum H,_ is again due to the fact that AC,, decreases with decreasing C_. ForI'=7.12 x 10-3
(GL,=5Kcm!),H_isa decreasing function of y. For " = 7.12 x 1(-2 (GL =50 K cm™!), the
variation of H with ¥ is much weaker, and for " = (.285 (G = 200 K cm-!) is nearly
independent of Y. We also note that the mushy-zone thickness decreases strongly with increasing
temperature gradient.

ForI"=7.12 x 10-2 (GL =50 K cm™) the neutral curves (y versus a) correspond to steady
onset of buoyancy-driven convection; we have found no evidence for the oscillatory onset of
instability in the dendritic solidification of Pb-Sn alloys. For given values of C.. and T, the critical
solidification rate (denoted by ¥') is the maximum point on each neutral curve and determines one
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point on the stability boundary. For y> ', the one-dimensional dendritic basic state solution is
stable for all wavenumbers a, whereas for Y<7Y' itis unstable for some range of a.

For C_ = 0.1, the critical solidification rate (at the extremum) is Y=220x 102 (V=68
sec™1) and the critical wavenumber is a = 0.32. For C_ = 0.2 the critical solidification rate assumes
a maximum [y* = 2.59 x 10-2 (V, = 80 sec~1)] before shifting slightly downward to smaller
solidification rates [y* = 1.98 x 10-2 (Vi =61 U sec1)] for C_ = 0.55. We note that the stable
range of solidification rates is smallest for C. = 0.2, which will be discussed below in connection
with the stability boundaries.

Examination of the vertical structure of the disturbance amplitudes of vertical velocity and
temperature in the liquid and mushy zone, solute mass fraction in the liquid, and volume fraction in
the mushy zone shows that the disturbances correspond to the least stable mode (i.e., that with
least positive or most negative Re(0)).

ForC_,=055and " =7.12 x 10-2, inspection of the disturbance amplitudes at the critical
conditions y = 1.976 x 10-2 (Vi=61pusec)and a = 0.32 (as determined from the neutral curve)
shows that the vertical velocity disturbance assumes a maximum just above the liquid/mushy-zone
interface and decays strongly in both layers. We also note that the depth of penetration of the
convective disturbance in each layer is of the same order. The structure of the temperature

volume fraction are largely confined to very thin layers adjacent to the liquid/mushy-zone interface

Our principal results are discussed in terms of a division of the y-C_ plane for four values of
I. We have determined the regions in which the one-dimensional dendritic solution exists, along
with information regarding its stability and the stability of the one-dimensional plane-front solution
(which exists for all combinations of C..v,and ). Each region is characterized according to
whether the one-dimensional dendritic solution exists (and if so, whether it is stable), and whether
the plane-front solution is stable with respect to morphological and convective disturbances (Coriell
et al. 1980; Oztekin and Pearlstein 1992).

ForT"=0.285 (GL = 200 K cm-1), the one-dimensional dendritic solution exists in regions 1
and 2, and is stable at sufficiently high solidification rates (region 1) and unstable for lower values
of y (region 2). In regions 3-5, no one-dimensional steady solution of the governing equations
exists. The plane-front solution exists in regions 1-5, but is unstable with respect to morphological

convective disturbances. In summary, the one-dimensional dendritic solution is stable in region 1
and the one-dimensional plane-front solution is stable in region 5; elsewhere the plane-front
solution is unstable and the dendritic solution either does not exist or is unstable.

The topology of the division of the Y-C.. plane becomes more complex as the temperature
gradient decreases. For I'=7.12 x 10-2 (GL=50K cm1), a new region (6) exists in which both
the plane-front and dendritic solutions are stable. For the plane-front solution, the morphological
and convective stability boundaries have shifted downward, and stable plane-front solidification is
confined to a smaller part of the Y-C.. plane than for I = (.285. However, for this smaller
temperature gradient, dendritic solidification is stable for a larger range of y and C_ relative to the
I'=0.285 case. For '=7.12 x 10-2, the dendritic stability boundary intersects the dendritic
existence curve just above the latter's intersection with the plane-front morphological stability
boundary. Note also that the turnin g point on the dendritic stability boundary is more pronounced.

ForT' =3.56x 10-2 (G =25 K cm-1), the dendritic stability boundary intersects the dendritic
existence curve well below the plane-front morphological stability boundary, so that the part of the
¥-C,, plane in which the plane-front solution is stable and the dendritic solution exists has been
divided according to the stability of the dendritic solution. In region 6, the dendritic and plane-
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front solutions are both stable, as for I" = 7.12 x 10-2, while in region 7, the dendritic solution is
unstable. We note that the mushy-zone thickness predicted in the lower part of region 6 is
exceedingly small; one can conceive of more sophisticated solidification models (e.g., specifically
predicting cellular solidification and imposing a threshold criterion on mushy-zone thickness for
dendritic solidification) that would not predict the existence of a dendritic solution in the lower part
of region 6.

ForI'=7.12x 10-3 (G =5 K cm1), the dendritic solution exists in a part of the y-C_ plane
(region 8) in which the plane-front solution is morphologically stable and convectively unstable.

the one-dimensional plane-front solution are stable, allows for a more complete discussion of the
solidification regimes for binary alloys than has heretofore been possible.

That a one-dimensional steady dendritic solution exists for only some combinations of the
temperature gradient, solidification rate, and bulk mass fraction is not surprising since this basic

which a solution need not exist. The boundary in the parameter space within which the dendritic
solution exists is determined by two constraints. One is that the volume fraction at the
liquid/mushy-zone interface is unity and cannot exceed that value within the mushy zone. Hence,

the vertical derivative of the volume fraction at the liquid/mushy-zone interface should be

mushy zone. Below the upper branch of the dendritic existence curve, the latter constraint is
satisfied, and the mushy-zone thickness asymptotically approaches zero as this branch of the curve
is approached from below. Hence, a one-dimensional dendritic solution exists only in the region
between the two branches of the dendritic existence curve.

When the plane-front morphological stability boundary is crossed, a cellular interface
develops. As the solidification rate increases past the critical value, the cells becomes deformed

region of cellular solidification, in which the plane-front solution is morphologically unstable and
the dendritic solution does not exist. The experimental evidence showing that dendritic
solidification occurs when either the bulk mass fraction or solidification rate is increased for fixed
temperature gradient is consistent with the location and character of the dendritic regions 1 and 2 in
our results. '

For a given solute bulk mass fraction, there exists a critical solidification rate above which the
one-dimensional dendritic solution is stable with respect to infinitesimal disturbances. For all
values of I' dendritic solidification is least stable with respect to buoyancy-driven convection for
solute mass fractions near 0.2 (the value at which the dendritic stability boundary has a turning

their maxima for this C_, independent of temperature gradient and solidification rate. If the
Rayleigh number R, we define for the mushy zone is proportional to AC_ H, (Worster 1992),

12
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maximum destabilization for the Pb-Sn system occurs for C_ near 0.2. Fowler (1985) defined a
Rayleigh number R = (0c - o) m PogK/v,, where Kis a monotonically increasing function of
the permeability, and showed that gfnere is a critical value R _ o< I{Cg—C,) such that if R <R , then
dendritic solidification is stable with respect to small cfisturbances. Note that for Pb-§n, R,
assumes a minimum near C_ = (.2. Thus, there is a critical solidification rate above which the
condition R < R, is satisfied, and dendritic solidification is convectively stable. Qur numerical
results are thus consistent with the approximate analytical results of Fowler (1985) and Worster
(1992).

We also note that the stable range of yand C_, grows as I' decreases. This is due to the fact
that volume fraction (and hence permeability) decreases with decreasing temperature gradient, so
that the permeability of the mushy zone decreases and the onset of convection is suppressed. That
is also consistent with Fowler's result, since the Rayleigh number decreases as permeability
decreases. :

The amplitude of the disturbance to the vertical velocity assume a maximum on the liquid side
of the liquid/mushy-zone interface, and decay strongly away from the interface. The onset of

7.12x 1072 (G; =50 K cm-1), the critical wavenumber ranges from approximately 0.25 to 0.35,
depending on C,_, so that the corresponding convective wavelength (0.06 cm) is small compared to
the mushy-zone thickness (H, =0.311 cm for C.. = 0.55), but large compared to the diffusion
length for a typical solidification rate (HL=D/V,=492x 103 cmfor V, = 61 L sec-! at the
critical value of ¥). This type of onset corresponds to the mushy layer mode c{escribed by Worster
(1992). '
That a one-dimensional dendritic solution exists under conditions for which plane-front
solidification is linearly stable with réspect to morphological disturbances might at first seem
inconsistent. However, upon closer examination this result is less surprising, since the plane-front
stability analysis is restricted to infinitesimal disturbances (Coriell ef al. 1980). In fact, in part of
the parameter space where the plane-front solution is linearly stable, it is unstable with respect to

13
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— . Coriolis Effects on the Stability of Plane-

Front Solidification of Dilute Pb-Sn Binary Alloys

ALPARSLAN OZTEKIN and ARNE J. PEARLSTEIN

The possibility of using steady uniform rotation about a vertical axis to suppress the onset of
buoyancy-driven convection during solidification of a binary alloy is considered using a linear
stability analysis. For Pb-Sn alloys, our results clearly show that the onset of convection in a
horizontally unbounded layer can be suppressed significantly at modest rotation rates. Specif-
ically, “plane-front™ solidification is linearly stable at higher Sn concentrations in a rotating
configuration than in a nonrotating one. The predicted inhibitory effects of rotation on convec-
tion are discussed in terms of previous experimental and theoretical studies of the effect of
rotation on the onset of buoyancy-driven convection in single-component fluids heated from
below and in binary fluids subject to thermal and solutal stratification.

I. INTRODUCTION

DuriING directional solidification of alloys, it is fre-
quently desired to produce large single crystals with very
low densities of macrosegregation defects and other im-
perfections. In principle, this can sometimes be achieved
by “plane-front” solidification, in which the melt-solid
interface remains perfectly planar. In such a case, the
solidification process would be steady in a reference frame
moving with the interface, and the only spatial variation
would be in a direction normal to the interface. How-
ever, in real systems, several instabilities can cause de-
. partures from the nominally steady and one-dimensional
plane-front case.

First, the solid-liquid interface may be subject to the
so-called morphological instability, which has been stud-
ied extensively since the early work of Mullins and
Sekerka.™ This instability causes deformation of the
nominally planar interface, ultimately leading to for-
mation of a two-phase “mushy zone” of dendrites and
interdendritic liquid. Departures from one-dimensionality
and steadiness in the mushy zone result in nonuniform
distribution of solute in the solidified material.

Second, the density of a binary or multicomponent melt
depends on both temperature and composition. When an
alloy is solidified by cooling from below, rejection of
solute(s) at the growing interface is potentially destabi-
lizing if the solute-enriched liquid just above the inter-
face is less dense than the warmer overlying bulk liquid.
Under some conditions, this adverse solute gradient
overcomes the stabilizing temperature gradient, leading
to convection in the melt. This fluid motion provides
another transport mechanism, besides molecular diffu-
sion, for redistributing solute(s) into the bulk liquid from
the relatively enriched region near the interface. Con-
vection in the melt is often referred to as thermosolutal
convection or, because the diffusivities of heat and sol-
ute are different, as doubly diffusive convection.

ALPARSLAN OZTEKIN, Research Assistant, and ARNE J.
PEARLSTEIN, Associate Professor, are with the Department of
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METALLURGICAL TRANSACTIONS B

Convective and morphological instabilities in a binary
alloy undergoing directional solidification were first
studied by Coriell er al.”™ using a linear stability anal-
ysis. These authors showed that motion may occur due
to either morphological or convective instabilities and
that the buoyancy force does not sensibly alter the cri-
terion for onset of morphological instability, which oc-
curs at higher wavenumbers than does the buoyancy-driven
instability. Subsequent work was reviewed by Glicksman
et al.” and Sekerka and Coriell.! More general discus-
sions of the effects of convection on plane-front and den-
dritic solidification have been given recently by Worster,!
Davis,® Huppert,[! Polezhaev,®! and Miiller.!’

Buoyancy-driven convection in the melt has been shown
to be the dominant factor in the formation of “freckles,”
a macrosegregation defect deleterious to the mechanical
properties of directionally solidified alloys. The forma-
tion and characterization of freckles in nickel-based
superalloys were first studied experimentally by Giamei
and Kear."" Poirier er al.''l investigated macro-
segregation in electroslag ingots, showed that convection
in the melt results in freckling in the solidified material,
and suggested that rotation might reduce freckling. Ridder
et al."? studied the effects of fluid flow on macro-
segregation in nominally axisymmetric ingots and showed
that melt convection results in macrosegregation in the
mushy zone. In a theoretical study of a binary alloy so-
lidifying radially inward, Maples and Poirier'' con-
cluded that macrosegregation results from natural
convection in the mushy zone driven by nonuniform
temperature and solute distributions. A recent review of
the effects of buoyancy-driven convection on macro-
segregation in binary and pseudobinary nonmetallic sys-
tems have been given by Miiller.”

One means by which the onset of convection can be
inhibited in a density-stratified fluid layer is to subject
the layer to a magnetic field aligned parallel or perpen-
dicular to the stratification.! For horizontal Pb-Sn layers
solidified from below at several growth velocities, Coriell
et al.” showed theoretically that the critical Sn concen-
tration above which instability occurs can be increased
an order of magnitude by applying a vertical magnetic
field of the order of one tesla. This technique requires
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that the liquid be an electrical conductor and so is ap-
plicable to metallic alloys, semiconductors, and aqueous
solutions.

Macrosegregation might also be controlled by increas-
ing or decreasing the magnitude of the gravitational ac-
celeration or changing its direction. Alexander ef al.!'!
and Heinrich er al.'>1®! theoretically studied the effect
of reduced gravity on macrosegregation in directionally
solidified alloys. These authors suggested that macro-
segregation in alloys can be reduced by solidification in
a low-gravity environment. Miiller"'” and Weber er al.!"¥!
have recently discussed solidification under conditions
where the magnitude of the body force is greater or less
than that of normal gravity.

Both gravity and an external magnetic field are body
forces which act on the liquid. As opposed to contact
forces such as pressure, viscous stress, and surface ten-
sion, which act on the surfaces of a fluid element, body
forces act on the mass of a fluid element. Hence, their
local strengths are proportional to the local fluid density.
In addition to gravitational and magnetic body forces,
there are other “pseudo-body forces” which manifest
themselves as fictitious accelerations (centripetal and
Coriolis) when the reference frame to which the fluid
motion is referred undergoes steady rotation relative to

an inertial frame. (An additional fictitious acceleration, -

with which we will not be concerned, manifests itself if
the rotation of the noninertial frame relative to the in-
ertial frame is unsteady.) Although these accelerations
do not correspond directly to forces (as in the case of
gravitational acceleration), they have the same mathe-
matical form as accelerations associated with body forces
and can have dynamical consequences equally as pro-
found as the gravitational and magnetic forces discussed
above.!"™ In light of this, and the fact that modification
of the gravitational field or imposition of an external
magnetic field may not always be possible, the possi-
bility of using rotation to suppress the onset of convec-

tion in a liquid undergoing directional solidification is of -

interest.

Several effects of rotation on solidification have been
discussed by Schulz-DuBois.??™® The experiments of
Kou,”"" Kou ef al.,”™ Sample and Hellawell,™ Miiller,[!”!
and Weber ez al.7® have shown that rotation can sig-
nificantly reduce the degree of macrosegregation in bi-
nary alloys directionally solidified under plane-front or
dendritic conditions. Kou and Kou et al. studied the ef-
fect of steady rotation about a vertical axis on freckle
formation in Sn-Pb alloys. Sample and Hellawell con-
sidered solidification of the transparent alloy NH,CI-H,0
in a crucible rotating about an axis inclined between 0
and 30 deg with respect to the vertical. Miiller!"”! and
Weber et al. have studied the effect of rotation on the
growth of Te-doped InSb crystals and have shown that
striations can be suppressed at sufficiently high rotation
rates. These studies show that the degree of macro-
segregation (freckles and striations) can be significantly
reduced by rotation.

There are two means by which steady rotation about
a fixed axis can influence the motion of a fluid. In terms
of a reference frame rotating with constant angular ve-
locity £ about an axis, these correspond to the centri-
petal and Coriolis accelerations, for which the terms
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o2 X ) X rand 2p, Q2 X wu, respectively, are added
to the momentum equation. Here, r is the position vector
measured from the axis of rotation, u is the local fluid
velocity relative to the noninertial reference frame, and
p. is the local density of the liquid.

Previous theoretical studies of the effects of rotation
on the onset of buoyancy-driven convection have been
restricted to cases where no solidification occurs. For a
horizontally unbounded layer of a single-component fluid,
Chandrasekhar,?¥ Chandrasekhar and Elbert,! and Niiler
and Bisshopp!?! have shown that steady uniform rotation
about a vertical axis can significantly inhibit the onset
of convection, with the Coriolis-related Taylor-Proudman
mechanism'?”! playing the dominant role. The effects of
centripetal, Coriolis, and gravitational accelerations on
convection in horizontally confined rotating fluids in cy-
lindrical containers of various aspect ratios were consid-
ered in an early series of articles by Homsy and
Hudson.'”*32 More recently, for a single-component fluid,
Weber er al.!'"® have computed buoyancy-driven flows
equivalent to those which can be driven by a temperature
gradient maintained between the ends of an otherwise
insulated right circular cylinder rotating at constant an-
gular velocity about an axis perpendicular to and inter-
secting the cylinder axis but not passing through the
cylinder. Three-dimensional computations, in which the
variation of the magnitude of the centripetal acceleration
Q) x ) x r along the cylinder axis was neglected (a
good approximation when the cylinder length is small
compared to the shortest distance between the axis of
rotation and the cylinder), were performed with the term
accounting for the Coriolis acceleration 2€} X u either
included or omitted. Weber er al. found excellent agree-
ment between experiment and computation when the
Coriolis acceleration was included.

For a binary fluid, Pearlstein™! has shown that the
Coriolis acceleration can either stabilize or destabilize a
horizontally unbounded layer, depending on the values
of the Prandtl and Schmidt numbers, the dimensionless
rotation rate (expressed in terms of a Taylor number),
and the dimensionless temperature or solute gradient
(expressed in terms of thermal and solutal Rayleigh
numbers). Other work concemning the effect of rotation
on doubly diffusive convection in binary fluids (with no
phase change) has been reported by Sengupta and
Gupta,™ Masuda,™ Antoranz and Velarde,**" Schmitt
and Lambert,?® Riahi,® Worthem eral.,;”® and
Bhattacharjee 414243

In this work, we use linear stability analysis to study
the effect of the Coriolis acceleration on convective and
morphological instability for alloys which solidify with
a nominally planar interface. This work serves to iden-
tify the mechanism by which Coriolis effects affect the

onset of convection in solidifying binary alloys. The

analysis is illustrated by results for the Pb-Sn system.

. BASIC STATE AND
LINEAR DISTURBANCE EQUATIONS

We adopt the model of solidification used by Coriell
et al.,” in which the Oberbeck-Boussinesq equations
govern motion in the liquid. In a reference frame trans-
lating with the nominally steady velocity (V;) of the
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moving interface and rotating with constant angular ve-
locity €}, the basic state

u=(0,0,-¢V) f1]
_ M, C,. G Vv
7, —TM+L—+M[1 —exp(— Ps ’z)]
k psV; ProK.
2]

1 -k V,
6 = C,[I + exp (— Ps s z)] [3]
k PreD,.

G 1%
4 5 s[l—exp (——’z)] [4]
V, Ks

is the same used by Coriell er al., where @, T}, ¢,, and
T are, respectively, basic state values of velocity, tem-
perature, and solute concentration in the liquid and tem-
perature in the solid, x, and ks are the thermal
diffusivities of the liquid and solid, respectively, D, is
the diffusion coefficient. ps is the solid density, p,,
is the liquid density of pure lead at its melting point, c..
is the bulk concentration, G, is the liquid-side temper-
ature gradient at the planar interface, V, is the nominal
growth rate, & is the segregation coefficient, m, is the
slope of the liquidus, 7, is the melting temperature of
Pb, € = pi/p;w — 1 is the fractional shrinkage, G =
(LV, + G k,)/k, is the solid-side temperature gradient
at the planar interface, &, and k; are the thermal con-
ductivities of the liquid and solid, respectively, and L is
the Tatent heat of fusion per unit volume. (All concen-
trations used herein are weight percentages.) We note
that the basic-state temperature distribution in the solid
(Eq. [4]) is valid only near the interface.

As in stability analyses of other flows subject to uni-
form rotation.!** -*****) the linear disturbance equations
we use differ from those in the nonrotating case only by
addition of the Coriolis acceleration to the disturbance
momentum equation. (This approach neglects the con-
sequences of density variation in the term corresponding
to the centripetal acceleration.) The equations governing
small disturbances in the liquid are

_ m;C,
Iy=Ty +

Viu=0 [51]
du . du \v
'——ﬂv,_—+29+u=——p“aTgT,_iz
at  py 0z Pro

- anCLi: + szu

(6]
a7, 0T, Vv
e B V,— + G,wexp (— PsT z) =k, VT,
9t  po d: ProKy.

[7]
dc dc V
B V,— + Gow exp (— Py z> =D, Vi,
at Pro oz P,

[8]

where the dependent variables u, w, p, T, and ¢, are,
respectively, the disturbance values of the velocity, its
z-component, pressure, temperature, and concentration
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in the liquid. Here, i, is the unit vector in the z-direction,
g is the magnitude of the gravitational acceleration, v is
the viscosity, a; and a are the thermal and solutal ex-
pansion coefficients, respectively, G = (k — 1)psc. V,/
(kpoD,) is the concentration gradient at the planar inter-
face, ) = (). is the angular velocity, and , is a con-
stant. The disturbance energy equation in the solid is
a7 v T vir ]
— — —— K -
ar ez U F
where T is the disturbance temperature in the solid.
Taking the curl of Eq. [6] and the dot product of the
result with i,, we obtain an equation

S, S, w
sy 0, = Vi, [10]
at  p, 9z dz

for the z-component of the vorticity, w.. After twice tak-
ing the curl of Eq. [6], the vertical component of the
resulting equation is

3 a _, dw,

Zvi - Ey Zery, 00,2

at P00z
=a;gViT, + acgVic, + vViw [11]

9z

The disturbance boundary conditions at the interface are

an(x,y,t
u(xy)’,o,f) = E‘/I’r,(—y) [123]
0x
oan(x, y,t
v(x,y,0,0) = eV,—n—y-—) [12b]
ay
an(x,y,t
w(x,y,0,1) = —g LYD [12c]
ot
aw(x,y,0,t \
w300 = —eV,Vin(x,y, 1) [124]
dz
on(x,y,t oT,(x,v,0,1 dTs(x,y,0,1¢
Iy )=~kL L(x,y )+ks s(x,y,0,1)
at a; dz
N (& G.Vik, Gsv,ks) )
Po K Kg
[12e]
Vipsc. Co IM(X,¥,1)

n(x,y,0) + Ve, (x,y,0,8) + "

Dypro ar
- PoD; dc (x,y,0,1) [12f]
ps(l — &) az
Ty (x,5,0,8) + Gyn(x,y,1) = Ty(x,y,0,1)
+ Gsn(x, y, 1)
i [12g]
T(x,y,0,8) + Gun(x,y,1) = m,Gen(x, y,1)

+ mpc(x,y,0,1) + T, ¥V2 n(x,y,1) [12h]

where 7 is the interface position and ¥ is the cépillary
coefficient.
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III. NONDIMENSIONALIZATION
AND FOURIER DECOMPOSITION

We scale the velocity, time, length, temperature, con-
centration, and vorticity with «, /H, H?/v,H, G,H, c.,
and «, /H’, respectively, where H = D, /V, is the char-
acteristic length (associated with the destabilizing gra-
dient of rejected solute, see Eq. [3]), and write the
horizontal and temporal dependence of the nondimen-
sional disturbance quantities as exp (o7 + ia X + ia,Y),
where a, and a, are the x- and y-components of the
wavevector and o is the temporal eigenvalue. Substitu-
tion into Eqgs. [7] through [11] yields

Co(D?— )W - SﬁD(D2 — a®)W = —Ra,;a’@,
C
- Ragled®C, + (D* — a®)’W - Q¥DQ, [13]
o), — sﬁ DQ, = Q¥DW + (D’ — a®)Q, [14]
o4

Pro®, — pLeD®, = (D* — a*)®, — Wexp (—pLeZ)
[15]

ScoC, ~— pDC, = (D* — a*)C, + Eg W exp (—pZ)

[16]
in the melt and
Pro@g — LeDO; = k(D? — a*)0; [17]

in the solid. Here, Pr = v/k, is the Prandtl number,
Sc = v/D, is the Schmidt number, Le = D, /x, is the
Lewis number, Ra; = a,;¢G,H'/(k,v) and Ra; =
acgce.H /(D v) are the thermal and solutal Rayleigh
numbers, respectively, Q¥ = 2Q,H?/v is the square root
of the Taylor number, p = ps/p,, is the density ratio,
Kk = kg/x, is the thermal diffusivity ratio, and y =
(1 — k)/k. The boundary conditions (Eqs. [12a] through
[12h]) at the interface become

W(@O) = —eProf [18a]
DW(0) = eLea’B [18b]
Q,0)=0 [18c]

ScoB = —kiDO(0) + k¥DO(0)
+ Le(k¥p —kf/x— 1/x)B  [18d]
(1-G)B =050 - 0.0 [18¢]

1
(Sco+ kp)B = —kC,(0) — —DC,(0) [18f]
P

£

(=a’T% + m* — B = % C.(0) + ©,(0) [18g]

where W, C,, Q,, and O, are, respectively, the ampli-
tudes of the disturbances to the vertical velocity, con-
centration, vertical vorticity, and temperature in the melt,
®; is the amplitude of the disturbance temperature in the
solid, and B (a constant) is the amplitude of the disturbed
interface position. Here, we define dimensionless pa-
rameters k¥ = G, k,H/(LD,), k¥ = G ksH/(LD)),
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m* = m,G:/G., Tk = Tu¥V/(G,H?), and G = G/G,.
For the far-field boundary conditions, we follow Coriell
et al.1?! and set all disturbances to zero

W=DW=Q,=C,=0,=0 asZ—ox

O;,=0 asZ— —w

[19a]
[19b]

far from the interface.

IV. NUMERICAL SOLUTION

Our objective is to find conditions under which infin-
itesimally small disturbances neither grow nor decay for
a finite number of wavenumbers and decay for all other

wavenumbers. Disturbances which neither grow nor decay’

are said to be neutral. The neutral disturbances can be
of two types, depending on the imaginary part of o. If
the imaginary part of o is zero for a neutral disturbance,
the onset of instability will be via monotonically grow-
ing disturbances (steady onset). If the imaginary part of
o is not zero, the neutral disturbance will oscillate in
time (oscillatory onset).

In the previous section, we formulated an eigenvalue
problem for two systems of ordinary differential equa-
tions on two semi-infinite intervals (in the melt and in
the solid), coupled by boundary conditions at the de-
formable interface. For convenience, we follow Coriell
et al. and solve the problem on a finite interval [— A, A],
where 2h is the dimensionless height of the computa-
tional domain. With regard to the far-field boundary
conditions at Z = *2, we set all disturbances to zero

WIDW=Qz=CL=®L:O atZ=nh [203]
in the melt and
Os=0 atZ=—h [20b]

in the solid. In this work, we have used # = 10. (For
steady onset, we have checked a number of our results
using more accurate asymptotic boundary conditions ap-
plied at Z = *h derived following Keller’s*! procedure
and have found excellent agreement between the eigen-
values computed using the two sets of boundary condi-
tions.) Since we use Chebyshev polynomials in our
numerical solution, we scale the liquid and solid regions
by z, = (2Z — h)/h and z, = (2Z + h)/h, respectively,
so that each region lies between —1-and +1. The re-
sulting system is then solved using a spectral Galerkin
technique developed by Zebib."! The problem thus is
reduced to a matrix eigenvalue problem

Ax + oBx =0 [21]

where o is the temporal eigenvalue and the elements of

the square matrices A and B depend on a* = a? + a’.

(the square of the horizontal wavenumber), the bulk con-
centration c., and the other dimensionless parameters.
In what follows, we characterize the stability of the
nominally plane-front solution in terms of the growth ve-
locity V, and bulk concentration c¢., with all other pa-
rameters taken as fixed. For each value of V,, we seek
one or more critical values of c.. (denoted by c¥), such
that for c. < c¥, disturbances decay for all wave-
numbers, while for c. > ¢, disturbances grow for all
wavenumbers in some range. In order to determine the
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critical value(s) of c.., we first determine the neutral curve
(¢« vs the wavenumber a), separating those combina-
tions of c. and a for which all temporal eigenvalues o
lie in the left half-plane (a stable basic state) from those
for which at least one eigenvalue lies in the right half-
plane (an unstable basic state). To determine the bulk
concentration on the neutral curve for an arbitrarily cho-
sen wavenumber a, we first guess a value of ¢, and com-
pute all eigenvalues o using Eq. [21]. If all eigenvalues
have negative real parts, the value of c.. is increased by
doubling the previous value; otherwise, the new value
of c. is chosen as half the previous value. This process
is continued until we determine two values of ¢, be-
tween which at least one sign change is obtained in the
real part of the least stable temporal eigenvalue. The
concentration on the neutral curve is then determined using
a bisection method.

To compute the critical concentration ¢ at which in-
stability first occurs (i.e., the minimum on the neutral
curve), we arbitrarily choose a wavenumber and com-
pute the corresponding c.. on the neutral curve using the
procedure described above. We then fix c.. at the value
computed at the previous step and compute the eigen-
values o for a discrete set of wavenumbers in a chosen
range. From this set, we select the wavenumber corre-
sponding to the o with largest real part. If this wave-
number is at an endpoint of the chosen range, we extend
the range to include the wavenumber corresponding to
the largest Re(o). We then select this wavenumber and
determine the corresponding ¢, on the neutral curve. We
continue this process until the relative change in c, is
less than 107°.

V. RESULTS

The solutions of Egs. [13] through [19] depend on 15
nondimensional parameters, as defined in Sections II and
IIl. To determine the stability of a basic state with a
nominally planar interface, numerical values of these pa-
rameters need to be specified. (Solutions on a finite in-
terval depend also on A4.) Therefore, it is not possible to
numerically explore the effects of more than a few com-
binations of these parameters on the onset of instability.
In this work, we have thus restricted ourselves to the
Pb-Sn system which, due to the low melting points of
both components, has been the subject of several ex-
perimental studies. The parameter values (other than (39
are as used by Coriell er al.l! at reference conditions
corresponding to pure lead at its melting point. (The dif-
fusivity of Sn in Pb corresponds to an infinitely dilute
solution.)

To test our code, we first considered the nonrotating
case and compared our results to those of Coriell er al.
Taking the liquid-side temperature gradient at the inter-
face as G, = 200 K cm™", we computed neutral curves
¢~ Vs a for various values of the solidification rate v,
‘The neutral curves were generally similar to those shown
by Coriell et al. The only qualitative difference was that
in our work, several new oscillatory neutral curves were
found to branch from steady neutral curves found by
Coriell et al. and in the present work. We believe that
our detection of these additional oscillatory neutral curves
(which in each case lie well above the critical value of
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¢ and are hence of no practical consequence) is due to
use of a numerical technique which simultaneously com-
putes a large number of temporal eigenvalues at each
combination of ¢, and V,, as opposed to the shooting
technique of Coriell er al. which individually computes
the temporal eigenvalues by a one-point iteration scheme.

We present our principal results in terms of stability
boundaries in the V, — ¢ plane. For ease of comparison
to the work of Coriell er al.,” results are presented in
terms of dimensional variables. With G, fixed at 200 K
cm™', Figure 1 shows stability boundaries for £}, = 0,
100, 200, 300, and 500 rpm. For each value of €, the
stability boundary consists of some portion of the mor-
phological branch (c decreasing with increasing V,) found
by Coriell er al. (their Figure 1) joined to a convective
branch. The critical value of c.. on the convective branch
is an increasing function of ), at any value of V,, clearly
indicating the inhibitory effect of rotation on the onset
of buoyancy-driven convection. We note that for Vv, =
S5 us™, rotation at {}; = 500 rpm increases by slightly
more than two orders of magnitude relative to the non-
rotating case the critical Sn concentration above which
the plane-front solution becomes unstable. We further
note that the morphological branch is unaffected by ro-
tation, whereas as (), increases, the value of V, at which
the onset of instability shifts from the convective branch
to the morphological branch decreases from about
40 p ™' in the nonrotating case to about 27 u s~' for
Q2 = 500 rpm. '

For each value of Q,, we see a local minimum near
V; =1 us™, with the minimum shifting to smaller growth
velocities and becoming relatively more shallow as Q,
increases. We note that the maximum relative stabili-
zation by rotation occurs near the local minimum, and
that for {33 = 500 rpm, the critical bulk concentration
of Sn is increased more than a hundredfold. Although
Coriell et al.™ noted a local minimum in the stability
boundary near V; = 1 u s~ in the nonrotating case for
the largest gravitational acceleration considered, they of-
fered no explanation for its existence. This minimum is

10° Ty Ty — 1T
10"
&
N .2 -
«, 10 3
o 4
10° 4
0 rpm :
g0t Lo el NN | N
0.1 1 10 100

V, s

Fig. 1—V,-c# stability boundaries for G, = 200K cm™, with ), =
0, 100, 200, 300, and 500 rpm.
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a consequence of the fact that as V, — 0, the concen-
tration gradient G- = (k — 1)psc<V,/(kpoD,) vanishes.
As the temperature gradient is independent of ¢, and is
stabilizing, the critical value of ¢, must ultimately in-
crease as V; — 0. (Of course, the weight percent of the
solute, ¢, cannot exceed 100.) As ¢ must initially de-
crease with increasing V;, there must be a local minimum
on the convective branch before ¢ can increase to join
up with the morphological branch of the stability bound-
ary. This nonmonotonic dependence of ¢ on V, can be
interpreted in terms of the existence of four critical val-
ues of V, for certain values of ¢... (In addition to the three
critical values shown in Figures 1 and 2, we note that
for sufficiently large V,, ¢X ultimately increases on the
morphological branch.!®)

As discussed by Coriell er al.™ for the nonrotating case,
at each value of {),, the onset of morphological insta-
bility occurs via a short wavelength (large wavenumber)
instability while convective instability sets in via distur-
bances with relatively longer wavelengths. In the fol-
lowing section, this point is discussed in the context of
the mechanism by which rotation inhibits the onset of
convection.

For G, = 400K cm™, Figure 2 shows stability bound-
aries (c¥ vs V,) analogous to those for G, = 200K cm”™'.
Aside from a slight shift of the stability boundaries to
higher values of c¥, the results are qualitatively similar
to those for G, = 200 K cm™". In particular, the onset
of convection is suppressed but the morphological insta-
bility is not influenced by rotation, and the critical value
of c.. passes through a minimum near V, = 1 u s

VI. DISCUSSION

The remarkable stabilization obtainable at low growth
rates (more than a hundredfold increase in the critical
value of ¢, at V, = 1 u s™' can be achieved by rotating
the layer at 500 rpm for the two values of G, considered)
is undoubtedly due to the well-known Taylor-Proudman
mechanism described by Chandrasekhar.?” According
to the Taylor-Proudman theorem, steady motion parallel

10:— % L B R R T T T T T

200 rpm

c. (%)

10-! e s aaaal M ol L I I

0.1 1 10 . 100
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Fig. 2— V;-c¥ stability boundaries for G, = 400 K cm™", with (3, =
0, 100, 200, 300, and 500 rpm.
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to the axis of rotation in a uniformly rotating inviscid
fluid is prohibited at any nonzero rotation rate. If this
theorem were strictly applicable to a viscous fluid, the
onset of steady convection would be prohibited, since
the flow in convection cells must have a vertical com-
ponent. Instead, in a viscous fluid, one sees an inhibition
of the onset of steady convection, with the degree of
inhibition (expressed here as an increase in c.) increas-
ing with {},. That the onset of oscillatory convection is
hardly affected is due to the fact that the Taylor-Proudman
theorem applies only to steady flows. It is also not sur-
prising that the morphological instability is unaffected
by rotation. The morphological instability occurs at very
short wavelengths, so the motion is almost perpendicular
to the solidification front (i.e., aligned with the axis of
rotation). Hence, the Coriolis acceleration does not sen-
sibly affect the morphological instability.

For a horizontally unbounded binary fluid layer in which
the density depends on temperature and one composition
variable, Pearlstein’s linear stability analysis!*! shows
that Coriolis effects generally inhibit the onset of con-
vection (by the Taylor-Proudman mechanism). Under
some conditions, however, rotation can destabilize the
layer, depending on the values of Pr, Sc, the dimension-
less rotation rate (characterized by a Taylor number), and
the dimensionless temperature or solute gradients (char-
acterized by thermal and solutal Rayleigh numbers). For
conditions under which destabilization (on a linear basis)
occurs relative to the nonrotating case, instability sets in
via an oscillatory mode, in which the natural frequency
of oscillation of a buoyant fluid element is tuned (by
rotation) in such a way that there is a local minimum in
the critical value of Ray as a function of the dimension-
less rotation rate. This behavior was found™* for Pr and
Sc both less than unity, although there is no apparent
reason why such destabilization cannot occur under other
conditions when onset is via an oscillatory mode.

Although Pearlstein® found in the rotating doubly
diffusive case that for Pr < 1 < Sc (a condition satisfied
in the present case, in which Pr = 0.023 and Sc = 81)
there can exist as many as three critical values of the
solute Rayleigh number for certain values of the Taylor,
Prandtl, Schmidt, and thermal Rayleigh numbers, we have
found no evidence of such multivalued stability bound-
aries in the present calculations. As in the case investi-
gated earlier,®® it is possible that such behavior occurs
in relatively small regions of the parameter space (G,,
V,, etc.) and has gone undetected so far. As discussed
in Section V, however, Figures 1 and 2 imply that for
certain values of c., there exist four critical values of V,
(including the unshown portion of the morphological
branch).

Even though the foregoing analysis is restricted to a
horizontally unbounded fluid layer, the work of Homsy
and Hudson'®! and Biihler and Oertel!*”! suggests that its
predictions will be qualitatively correct for finite aspect
ratios (ratio of mold radius to height) if the parameter
Q4R,/g (a Froude number, where R, is the mold radius)
is sufficiently small. For the onset of thermal convection
in rotating water or mercury layers heated from below,
the excellent quantitative agreement between classical
linear stability analysis for a horizontally unbounded
layer?$#>#1 and experimental work for finite aspect

METALLURGICAL TRANSACTIONS B

I



[

ratios!**%l provides a clear demonstration of the
potential of the Coriolis acceleration to suppress
buoyancy-driven convection in a rotating fluid.

Interpretation of the results of a stability analysis re-
stricted to infinitesimal disturbances is obviously subject
to the caveat that larger disturbances might grow, even
though sufficiently small disturbances are predicted to
decay. Indeed, it is known that for rotating fluid layers
heated from below, the onset of thermal convection
sometimes does occur'®-5!52 at Jower Rayleigh numbers
than predicted by linear theory. However, in that case,
accounting for finite (i.e., noninfinitesimal) amplitude
disturbances modifies the quantitative predictions of the
theory; the basic qualitative prediction of stabilization by
rotation remains unchanged.

The relatively modest rotation rates required to sig-
nificantly inhibit the onset of convection in the Pb-Sn
system make the proposed method an interesting can-
didate for a program of laboratory experiments. (We note
here that the experimental work of Miiller!'”) and Weber
et al."! focuses on the effect of rotation on the time-
dependence of the supercritical flow, with no informa-
tion given on the effect of rotation on the suppression of
motion. Furthermore, although these authors have con-
cluded that the Coriolis acceleration is key to the elim-
ination of striations at high rotation rates, their
experimental design complicates the separation of ef-
fects of the Coriolis acceleration from the increased
“pseudo-gravitational” effects associated with the cen-
tripetal acceleration.) Experiments might be conducted
using a completely filled cylindrical mold, thermally in-
sulated on the vertical surface and mounted axi-
symmetrically on a rotating horizontal turntable. If the
liquid at the top of the rotating mold is in contact with
a gas or vacuum, it will have a nearly paraboloidal free
surface, on which the elevation above the point on the
axis of rotation is Az = Qgr’/(2g). Although this con-
figuration is consistent with rigid-body rotation, it also
leads to a nearly paraboloidal solid-melt interface. For
high rotation rates or large mold radius, this will in turn
lead to significant radial variations in the solidified alloy.
Also, cooling at the radial boundary leads to a radial
temperature gradient, which in tumn leads to significant
centrifugal effects. For these reasons, the results of the
present analysis cannot be compared to the experimental
work of Kou,"”'' Kou et al.,” or Sample and Hellawell, 23
in which strong radial variations in macrosegregation are
observed in the solid. Experiments of the type proposed
above were initiated some time ago by Copley"™? for the
crystallization of ammonium chloride from aqueous
solution.

Finally, we note that for many binary systems, plane-
front solidification does not occur at practical growth ve-
locities, and that the morphological instability results in
dendritic solidification. In this case, rotation might also
suppress buoyancy-driven convection in the melt and
interdendritic liquid; this possibility is currently being
investigated by us for the Pb-Sn system.

LIST OF SYMBOLS

a magnitude of wavevector
a, x-component of wavevector
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y-component of wavevector

disturbance concentration

basic state concentration distribution
amplitude of disturbance concentration
bulk concentration

critical bulk concentration

diffusion coefficient

magnitude of gravitational acceleration
Gs/G,

(k = Dpsc..V,/(kpoD,) (nominal
concentration gradient at interface)
nominal liquid-side temperature gradient at
interface

(LV, + G, k,)/ks (nominal solid-side
temperature gradient at interface)
dimensionless height of computational
domain in liquid and solid

D, /v,

unit vector in z-direction

segregation coefficient

thermal conductivity of liquid

Gk H/(LD,)

thermal conductivity of solid
GksH/(LD,)

latent heat of fusion per unit volume

D, /k, (Lewis number)

m.G¢/G,

slope of liquidus

disturbance pressure

v/k; (Prandt] number)

position vector

mold radius

argG H*/(k,v) (thermal Rayleigh number)
acge.H*/(D,v) (solutal Rayleigh number)
v/D; (Schmidt number)

time

disturbance temperature in melt

basic state temperature distribution in melt
melting temperature of Pb

Tw¥/(G.H")

disturbance temperature in solid

basic state temperature distribution in solid
disturbance velocity

basic state velocity

nominal growth rate

z-component of disturbance velocity
amplitude of z-component of disturbance
velocity

cartesian coordinates

dimensionless cartesian coordinates

(2Z + h)/h (vertical coordinate in solid)
(2Z — h)/h (vertical coordinate in liquid)
solutal expansion coefficient

thermal expansion coefficient

amplitude of disturbed interface position
(1 -Kk)/k

Ps/pro — 1 (fractional shrinkage)

interface deflection relative to nominally
planar condition

amplitude of disturbance temperature in melt
amplitude of disturbance temperature in solid
Ks/K,

thermal diffusivity of liquid
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W,

thermal diffusivity of solid

kinematic viscosity

Ps/Pro

local density of liquid

density of liquid at reference temperature and

composition

density of solid

temporal eigenvalue

dimensionless time

capillary coefficient

angular velocity

magnitude of 2

2Q0,H’/v (square root of the Taylor number
a = 4QJH"/v?)

amplitude of z-component of disturbance

vorticity

z-component of disturbance vorticity
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Abstract

A linear stability analysis is used to assess the potential of steady uniform rotation about the
vertical axis to suppress the onset of convection during directional solidification of mercury
cadmium telluride cooled from below. Since for sufficiently small x the density of Hg,_.Cd,Te

does not depend monotonically on temperature, there is a range of operating conditions (bulk

~ CdTe mole fraction, nominal solidification rate, and liquid-side temperature gradient) for

which, adjacent to the liquid-solid interface there is a sublayer in which the thermal
stratification is destabilizing. This differs from the normal case (i.e., binary alloys
characterized by a linear equation of state, such as Pb-Sn), in which the thermal stratification
is stabilizing everywhére. Thus, in Hg,_,Cd,Te melts there can exist a critical bulk CdTe mole
fraction x_ below which plane-front solidification is unstable at all solidification rates Vi
whereas in the normal case plane-front solidification at any x_ is linearly stable for
sufficiently small V, Moreover, for Hg,_,Cd,Te there can exist a critical solidification rate
V[" such that for V,<VS" plane-front solidification is unstable for all x_. Our results show
that modest rates of uniform rotation can significantly suppress the onset of buoyancy-driven
convection for the Hg,_, Cd Te system, and that rotation can substantially increase the critical

solidification rate VI‘:r beyond which plane-front solidification is unstable for all bulk CdTe

mole fractions.






1. Introduction

The crystal growth of mercury cadmium telluride (Hg,_,Cd,Te) is of considerable interest
due to its extensive use in the fabrication of infrared detectors and other electro-optical
devices. This has led to a number of experimental [1,2] and theoretical [3-5] studies of the
solidification of Hgl_xCdee from the melt. For a more extensive discussion, the reader is
referred to the reviews by Micklethwaite [6] and Capper [7]. In those applications in which
crystal size and defect density are critical, with the goal being to produce large, nearly perfect
single crystals, it is frequently desired to achieve “plane-front" solidification in order to
reduce segregation. If this could be accomplished, the process would be steady in a reference
frame moving with. the interface, and the only spatial variation would be in a direction normal
to the interface. However, in real systems, several instabilities can cause departures from the
nominally steady one-dimensional plane-front case.

First, the liquid-solid interface may be subject to a so-called morphological instability,
studied extensively since the early work of Mullins and Sekerka [8]. This instability deforms
the nominally planar interface, ultimately leading to formation of a two-phase "mushy zone" of
dendrites and interdendritic liquid. Departures from one-dimensionality and steadiness in the
mushy zone can result in solute segregétion in the solidified material. Second, depending on how
the liquid density varies with temperature and composition, and according to whether the
segregation coefficient is greater or less than unity (i.e., whether solute is rejected or
preferentially incorporated at the interface), the melt may be subject to a buoyancy-driven
convective instability. The resulting flow can contribute significantly to the redistribution of
solute, and hence to segregation [9-12]. »

Convective and morphological instabilities in a binary liquid undergoing directional
solidification were first studied by Coriell et al. [13] for Pb-Sn alloys. These authors showed
that motion may occur due to either morphological or convective instabilities, and that the
buoyancy force does not sensibly alter the criterion for onset of the former, which occurs at
higher wavenumbers than the latter. Subsequent work has been reviewed by Glicksman et al.
[14], and Sekerka and Coriell [15]. More general discussions of the effects of convection on
plane-front and dendritic solidification have been given recently by Miller [12], Worster
[16], Davis [17], Huppert [18], and Polezhaev [19].

One means by which the onset of buoyancy-driven convection in a dehsity-stratified'fluid

layer can be inhibited is to subject the layer to a magnetic field aligned perpendicular or
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parallel to the stratification [12]. For horizontal Pb-Sn layers solidified from below at
several growth velocities, Coriell et al. [13] showed theoretically that the critical bulk Sn
concentration above which instability occurs can be increased an order of magnitude by é
vertical magnetic field of the order of one tesla. This technique requires the liquid to be an
electrical conductor, and is applicable to metallic alloys, semiconductors, and aqueous solutions.

Segregation might also be controlled by increasing or decreasing the magnitude of the
gravitational acceleration or changing its direction. The theoretical studies of Coriell et al.
[13], Alexander et al. [20], and Heinrich et al. [21,22] suggested that macrosegregation during
directional solidification of binary alloys can be reduced by operating in a low-gravi;y
environment. Miller [23] and Weber et al. [24] have recently discusséd solidification under
conditions where the magnitude of the body force is greater or less than that of normal gravity.

Both gravity and an external magnetic field are body forces which act on the fluid. As
opposéd to contact forces such as pressure, viscous stress, and surface tension, which act on the
surfaces of a fluid element, body forces act on the mass of a fluid element. Hence, their local
strengths are proportional to the local fluid density. In addition to gravitational and magnetic
body forces, there are other "pseudo-body forces" which manifest themselves as fictitious
accelerations (centrifugal and Coriolis) when the reference frame to which the fiuid motion is
referred undergoes steady rotation relative to an inertial frame. (An additional fictitious
acceleration associated with unsteady rotation relative to the inertial frame will not concern us
here.) Although these accelerations do not correspond directly to forces (unlike the
gravitational acceleration), they have the same mathematical form as accelerations associated
with body forces, and can have dynamical consequences equally as profound as the gravitational
and magnetic forces discussed above [25]. In light of this, and the fact that imposition of an
external magnetic field or modification of the gravitational field is not always feasible, the
possibility of using rotation to suppress the onset of convection in a liquid undergoing
directional solidification is of interest.

The idea of using rotation to affect fluid motion and solute distribution in the melt, and
ultimately segregation in the solid, is not a new one. Beginning with the seminal work of
Czochralski [26] on the use of differential rotation of a growing crystal relative to the crucible, -
there have been many attempts to use rotation to reduce compositional variations in crystal
growth. Among these are the accelerated crucible rotation technique (ACRT) developed by

Scheel and Schulz-DuBois [27] and Schulz-DuBois [28], in which axisymmetric azimuthal or
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more complicated shear flows are generated by unsteady rotation of the crucible relative to the
fluid. At about the same time, Copley [29] conducted preliminary experiments in which the
solidification of aqueous ammonium chloride was conducted on a rotating turntable. Later, Kou
[30], Kou et al. [31}, and Poirier et al. [10] experimentally investigated the effects of rotation
on macrosegregation in the solidification of Pb-Sn and Al-Cu alloys under conditions such that
centrifugal effects were thought to be dominant. Sample and Hellawell [32,33] experimentally
investigated the effects of mold precession on the solidification of Pb-Sn alloys and aqueous
ammonium chloride solutions. More recently, Miller [23], Weber et al. [24], Rodot et al.

[34], and Chen and Chen [35] have considered crystal growth in or on a centrifuge.
Rotation can manifest its effects in a number of ways. The rotation of one or more solid

boundaries can geherate a shear flow (as in the ACRT technique) which directly affects the
redistribution of solute through the advection term (u « Vx, where u is the velocity vector and
x is the mole fraction) in the solute transport equation. Alternatively, if all solid boundaries
rotate at the same steady angular velocity, then the fluid may be in solid-body rotation. In a
rotating frame, the fluid is then motionless (u = O) and there is no advective contribution to
solute transport. However, the resulting fictitious accelerations can have important
consequences for the stability of the solid-body rotation [25,36], either enhancing or
suppressing the secondary flows responsible for solute redistribution.

As discussed above, steady rotation at constant angular velocity Q about a fixed axis can
influence the motion of a fluid by means of two "pseudo-body" forces. These correspond to the
centripetal and Coriolis accelerations, for which the terms pLQxer and ZpLqu,
respectively, are added to the momentum equation. Here, r is the position vector measured
from the axis of rotation, -u is the local fluid velocity relative to the rotating frame, and P, is
the local density of the liquid. If the density variation is neglected, the centrifugal acceleration
has no dynamical consequences. If the density variation cannot be neglected, then for a given
geometry, the ratio of the magnitudes of these accelerations is 2u n /(cho), where Q,, r, and
u, are the rotation rate, characteristic length (e.g., mold radius), and component of fluid
velocity relative to the moving frame and perpendicular to the axis of rotation, respectively.
Thus, if u, is independent of or increases sublinearly with Q,, the importance of the Coriolis
acceleration relative to the centrifugal acceleration will increase with decreasing Q.

Oztekin and Pearlstein [37] have recently considered the effect of Coriolis acceleration on

the stability of plane-front solidification of dilute Pb-Sn binary alloys, for which a linear
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dependence of density on temperature and mass fraction is an excellent approximation to the
equation of state. Their theoretical work shows that relatively modest rotation rates can
significantly suppress the onset of buoyancy-driven convection in horizontally unbounded
layers of that alloy undergoing directional solidification.

The question naturally arises as to what effects rotation has on the onset of convection in the
Hg,_,Cd,Te system, in which the nonmonotonic dependen;e of liquid density on temperature
[38] can give rise to, adjacent to the solid/liquid interface, a sublayer in which the thermal
stratification is destabilizing. It is the purpose of the present work to investigate this question.

We follow the approach of Oztekin and Pearlstein [37] and use a linear stability analysis to
study the effects of the Coriolis acceleration on the onset of instability during solidification of
Hg,_,CdTe. The paper is organized as follows. In §2, we present the governing equations. The
one-dimensional basic state and linear disturbance equations are given in §3. The latter are
nondimensionalized and Fourier-decomposed in §4. The numerical solution technique is

described in §5. Results for Hg, ,Cd,Te are presented in §6, followed by a discussion in §7.

2. Governing Equations and Formulation

We adopt the solidification model used by Coriell et al. [13] and Oztekin and Pearlstein
[37], in which the fluid properties, except density, are taken to be constant throughout the
liquid. The variation of density with temperature and CdTe mole fraction will be accounted for
in the buoyancy term and neglected everywhere else. The equations governing the fluid motion
are the Oberbeck-Boussinesq equations in a reference frame translating with the nominally
steady velocity (i,V;) of the moving interface and rotating at a constant angular velocity  about

the vertical axis

Veu=0, - : (1a)
@+u-Vu+Zqu+Qxer=—LVp—MifVVzu, (1b)
ot pLo pLo '

%+U-VTL=KLV2TL , (1c)
ox
_é_t_-q-u.VxL:DLVZXL, (1d)

where the dependent variables u, p, x_, and T _ are respectively, velocity, pressure, CdTe mole
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fraction, and temperature in the liquid, i, is the unit vector in the Z-direction, V, is the
nominal solidification rate (with dimensions of velocity), x_ is the thermal diffusivity of the
liquid, D_ is the diffusivity of CdTe in the liquid, v is the kinematic viscosity, Plo is the liquid
density at a particular reference temperature and CdTe mole fraction, Q = Q,i, is the constant
angular velocity, and g is the magnitude of the earth's gravitational acceleration. We note that
the fluid velocity u and interface velocity Vs (vide infra) are referred to the moving frame,
unlike the velocities employed in reference 13. Finally, we note that (1d) assumes that hass
transport in the system can be accounted for using a binary model, in which CdTe diffuses
through HgTe, and that the trace quantities of atomic Hg, Cd, and Te present in the liquid are
negligible.

We have used an equation of state based on the experimental data of Chandra and Holland
[38] and Mokrovskii and Regel [39]. The variation of liquid density with temperature and CdTe

mole fraction is represented by bivariate polynomials

3 4-i . '
p(xT)= D Y byx (T-1030K) for T<T,_ (x) (2a)
i=0 j=
and
3 . . -
P (xT)= D) d;x(T-1030K)’ for T> T, (x) ~(2b)
i=0 j=0
where
3 -
Trnax (X) = Z nx (3)
i=0

is a polynomial fit to the largest temperature for which liquid density data are available in the

literature. The linear dependence of density on temperature (2b) for T>T__ (x) is chosen to

max
match P and apL /aT at T, .. . Details are given in Oztekin and Pearlstein [40].

The energy equation in the solid is

oaT, oT,
R @

where T is the temperature in the solid, and K¢ is the thermal diffusivity of the solid.

The boundary conditions at the liquid-solid interface are






T TR Do 1

(i 1

(o

L.

;

I

e

(L

~(eVg+p*i,V]) en=uen, (5a)

(U+i,V)ot=0 (5b)

where n and t are unit vectors normal and tangential to the interface, respectively, Vg is the
local interface velocity, p* = p /pLo is the density ratio, pg is the (constant) solid density, and

£ = p*— 1is the fractional shrinkage. The energy balance at the liquid-solid interface is
L(Vg+ i,V) en=(-k VT +ksVTg)en , (5¢)

where the right-hand side represents the difference between the normal components of the heat
flux vectors in the liquid and solid, and the left-hand side represents the product of the latent
heat L(x_) and the normal component of the solidification velocity. Here k_(x,) and kg(x,) are
the thermal conductivities of the liquid and solid, respectively. The solute balance at the

interface is
ps(x Xg)(Vg + i;Vp) en= —pLoDLVxL-n, (5d)

where xg is the CdTe mole fraction in the solid, and solid-state diffusion has been neglected. We

also require the temperature to be continuous

T =Ts, (Se)
across the interface, the liquid and solid concentrations of CdTe at the interface to be related

according to the binary phase diagram

where k is the segregation coefficient, and the temperature and CdTe mole fraction at the

interface to be related by

1 1 .
TL=TM+ mL)(l_-TM ‘P[R—+E—], (59)
1 2

where T,, is the melting temperature of HgTe, m_ is the slope of the liquidus, R, and R, are the
principal radii of curvature of the interface, and ¥ is the capillary coefficient. The
temperature- and composition-dependence of most of the thermophysical properties (other

than p) is given in Appendix A. For the remaining properties, values measured at selected

" temperatures and compositions are taken as constant over the entire range.
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3. Basic State and Linear Disturbance Equations

in the reference frame described in §2, the steady one-dimensional basic state specified by

Vs= 0, (63)
with

a=-p*V i, (6b)

= mx. xG . '

T =Tyt Ii( = 4 _&—L—[X— exp(-p* V; Z/KL)], (6c)

PV - :

X =X, [‘l+l:k£exp(—p”vI Z/DL)}, (6d)
in the liquid, and

TS": TM+-rm-kx—°'4-o-l(—svgs-h—exp(—vI Z/Ks)], (6e)

I

in the solid is, aside from the velocities, which we refer to a translating and rotating frame, the
same as that used by Coriell et al. [13]. Here, V., G, T, X ,and T are, respectively, the
basic state interface velocity, velocity, temperature and CdTe distributions in the liquid, and
temperature distribution in the solid, and G_ and Gg are the liquid-side and solid-side
temperature gradients, respectively. Our basic state differs from that of Coriell et al. in that
Vsz 0 and T is not proportional to the shrinkage €, because in 6ur formulation the interface
and fluid velocities are referred to the same (moving) inertial reference frame.

As in stability analyses of other flows subject to uniform rotation [41-45], the linear
disturbance equations we use differ from those in the nonrotating case only by addition of the
Coriolis acceleration to the disturbance momentum equation. (This approximation, discussed by
Homsy and Hudson [48], neglects the consequences of density variation.in the term

corresponding to the centrifugal acceleration.) The equations governing small disturbances in

the liquid are
Veu' =0, (7a)
au' au, ’ 1 ’ ’ . ’r - ’ )
-gt——p*VI—é—Z-+Zqu =--p—v;> T iyt X+ VIR, (7b)
Lo
T, oT, . , ' o
—aEL--p*VI zL +G_wexp(=p*V;Z/x,) =k V2T, (7¢)
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Lo

X, ’ ’
LG, W exp(-p" Y, z/D,) =D Vx| , (7d)

%,

L _a*V
5
where u’, w', T, x| , and p are, respectively, the disturbances to the liquid velocity, its

Z-component, temperature, CdTe mole fraction, and pressure. Here, we define

f=M f=iEL(_X’I_)- (8)
T X
M k= kT
v L

and Gx=(k—1)p*le“/(kDL) is the CdTe gradient at the nominally planar interface. The

disturbance energy equation in the solid is_

aT§ -V, oTg =KSV2T'S, (9)
ot oz g

where T's is the temperature disturbance in the solid.

Taking the curl of (7b) and the dot product of the result with i, , we obtain an equation

Iy B0y ow’ , .
07 xy %92 20 W -vvie 10
- ptVi ez TV T (10)
for the Z-component of the vorticity, m'z . After twice taking the curl of (7b), the vertical
component of the resulting equation is

a 2., a 2ur a(.l)’ 2 2.’ 4 -I
B-EV w-p*V, -a—Z-V w +ZQO—éiz-=ngV T) + f,QV2x +VV W (1)

The disturbance boundary conditions linearized about the nominal interface position (Z = 0) are

XY, 1)

Sx,Y,0,0 = ey T (122)
'v’(x,Y,o,t)=evIa—“Q(a:}}3, (12b)
W (Y,0,8) = -¢ YL, (12¢)
WKY.00 _ ey w2 q(x,Y,1), (12d)

oZ

Come) | FLOY0D) | TLEY0Y (e_&ﬁ. S5k |y v, (126
X

S
ot YA oz L Xg
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2

p* V] , x. m(X.Y,t) D, ax (XY,0,t)

P a(X,Y, ) +V, x| (X,Y,0,t) + = RELZAE L , 12f

W ) I T o (1-k) oL (12f)
T/ (X,Y,0,8) + G (X, Y,t)= T (X.Y,0,0) +Ggn(X, Y, 1), (12g)

T, (X,Y,0,1) +G (XY, 1) =m_G,n(X,Y,t) +m x (X Y,0,8) + Ty wvjn(x,v,t), (12h)

where 1 is the interface deflection, V'S(X,Y,t) =i, an/at is the linearization of the disturbance

interface velocity, and X and Y are horizontal coordinates.

4. Nondimensionalization and Fourier Decomposition

We scale the velocity, time, length, temperature, CdTe mole fraction, and vbrticity with
% /H, H2/v, H, G H, X.,and x_ /Hz, respectively, where H=D_/V, is the characteristic
length [associated with the stabilizing gradient of preferentially incorporated CdTe, see (6d)],
and write the horizontal and temporal dependence of the dimensionless disturbance quantities as
exp(ot +iay X" +ia,Y™), where ay and a, are the X- and Y-components of the wavevector, x*
and Y* are the dimensionless horizontal coordinates, and © is the temporal eigenvalue.

Substitution into (7) and (9-1 2) yields

. _

o(D?-a2)W - ESZD(DZ—aZ)W - _F,a%@ -F,a%y +(D?-a)?W- Q:0Q, (13a)
p* *

cQ—-S—EDQ=Q°DW+(DZ—a2)Q, (13b)

oPre_—p*LeD8, = (D?-2a? )GL—Wexp(—p*LeZ*), (13c)

Y *

oScy. —p* Dy, = (D2-a?)x, +1E—Wexp(-p*Z) (13d)

L L L Le

in the liquid, and

oPreg-LeD8g= k(D?-2%)8s (14)
in the solid. Here, Pr=v/x_is the Prandtl number, Sc=v/D_ is the Schmidt number,
Le =D, /x, is the Lewis number, Fy= ngGLH4/(KLV), F = fxgx“H3/(va), Q: = ZQOHZ/V is
the square root of the Taylor number, k= Kg /KL is the thermal diffusivity ratio, ‘Z* is the

dimensionless vertical coordinate, and y= (1-k)/k. The boundary conditions (1 2a-h) at the
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interface become

W(0) = —eaBPr, (15a)

DW(0) = ea’ple, (15b)

Q(0) =0, | (15¢)

oScp = -k’ DeL(O) +kDOg(0) + Le(k” p" -k /x - VB, (15d)

(1-G)B =85(0)-8, (0), (15¢)

(aSc + kp*)B = —kx, (0) - Y;* DX, (0), ©(asf)
(-a2T,, +m"-1)p = mth(0)+eL(O), (15g)

Yp

where W, X ,Q and ©,_ are, respectively, the amplitudes of the disturbances to the vertical
velocity, concentration, vertical vorticity, and temperature in the liquid, 8 is the amplitude
of the disturbance temperature in the solid, and B (a constant) is the amplitude of the disturbed
interface position. Here we define dimensionless parameters k: = GLkLH/(LDL),
kg =GLksHALDL), m*=m G /G, Ty =T,¥/(GH?), and G=Gy/G,. For the far-field

boundary conditions, we follow Coriell et al. [13] and set all disturbances to zero
W=DW=Q=%=6,=0 as 2’ 5w, (16a-e)

85=0 as 2" —o . (16f)

far from the interface.

5. Numerical Solution

Our objective is to find conditions under which infinitesimally small disturbances neither _
grow nor decay for a finite number of wavenumbers, and decay for all other wavenumbers.
Disturbances which neither grow nor decay are said to be neutral. The neutral disturbances can

be of two types, depending on the imaginary part of G. If the imaginary part of ¢ is zero for a
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neutral disturbance, the onset of instability will be via monotonically growing disturbances
(steady onset). If the imaginary part of ¢ is not 2ero, the neutral disturbance will oscillate in
time (oscillatory onset).

In the previous section, we formulated an eigenvalue problem for two systems of ordinary
differential equations on two semi-infinite intervals (in the liquid and solid), coupled by
boundary conditions at the deformable interface. For convenience, we follow Coriell et al. [1 3]
and solve the problem on a finite interval [~h,h], where 2h is the dimensionless height of the
computational domain. With regard to the far-field boundary conditions at Z*= te0, we set all

disturbances to zero

W=DW=Q=x=6 =0 atZ*=h  (17a-e)
L=oL :

in the liquid and
85=0 _ at Z*= -h (17f)

in the solid. In this work, we have taken h to be at least 10, depending on the vertical structure
of the basic state temperature and solute fields (6c,d). (For steady onset, we have checked a
number of our results using more accurate asymptotic boundary conditions applied at Z'= +h
derived following Keller's [46] procedure, and have found excellent agreement between the
eigenvalues computed using the two sets of boundary conditions. ) Since we use Chebyshev
polynomials in our numerical solution, we scale the liquid and solid regions by z,= (22 -h)/h
and z,= (2Z"+h) / h, respectively, so that each region lies between —1 and +1. The resulting
Ssystem is then solved using a spectral Galerkin technique developed by Zebib [47]. The problem

is thus reduced to a matrix eigenvalue problem

As+0Bs=0, . (18)
where G is the temporal eigenvalue, and the elements of the square matrices A and B depend on
the square of the horizontal wavenumber a2= ax + a2 the bulk CdTe mole fraction x_, and the
other dimensionless parameters.

In §6, we characterize the stability of the nominally plane-front solution in terms of the
bulk CdTe mole fraction X and solidification rate V], with all other parameters taken as fixed.
As shown schematically in figure 1, there is a critical value of V, (denoted by Vcr) such that
for V > V':r some disturbances (i.e., for some wavenumbers) grow for all values of X_, while

for V]< Vlc , disturbances of every wavenumber decay for some range of bulk CdTe mole

12
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fractions. The upper and lower limits of that range are denoted by x* and x , respectively. To
determine the critical values of x_ (x> and x *) we first find the morphological and convective
neutral curves (x_ versus a) separating those combinations of x_ and a for which all temporal
eigenvalues G lie in the left half-plane (LHP) from those for which at least one eigenvalue lies
in the right half-plane (RHP), corresponding to stable and unstable basic states, respectively.

In order to determine the bulk CdTe mole fraction on the morphological and convective
neutral curves for an arbitrarily chosen wavenumber a, we first compute all eigenvalues o of
(18) at each of N values of x, (X, 1 <n<N)inthe range [xm'" 0.2], where the lower bound
is typically 10~%and the upper bound is determined by the largest CdTe mole fraction for which
we have data for the equation of state. We then attempt to determine a range of X, for which all
temporal eigenvalues are in the LHP. If one of the original N values of x_ selected is stable
(i.e., all temporal eigenvalues lie in the LHP), we then determine two intervals such that as X,
increases, within one a transition from instability to stability occurs, and within the other a
transition from stability to instability occurs. Through these two intervals pass the convective
and morphological neutral curves, respectively. If none of the original N values of X, is stable,
we choose the value (say, x(J)) for which the most unstable temporal eigenvalue has the
smallest real part, and subdivide the interval [x(J -1 x(“”] until we either find a stable value of
x,, (at which juncture we proceed to isolate the two intervals described above), or abandon the
search when the real part of the least stable temporal eigenvalue and the difference between
consecutive values of X, supports the expectation that all intermediate values of x_ are
unstable. Having found the intervals of X, in which the transitions occur, we then compute the
bulk CdTe mole fractions on the convective and morphological neutral curves using a bisection
method. _

To compute the critical bulk CdTe mole fraction x (i.e., the mmlmum on the
morphological neutral curve), we arbitrarily choose a wavenumber and compute the
corresponding x,, on the morphological neutral curve using the procedure described above We
then fix x. at the value computed in the previous step, and compute the eigenvalues ¢ for a
discrete set of wavenumbers in a chosen range. We next select the wavenumber from among this
set at which the o with largest real part was obtained. |f this wavenumber is at an endpoint of
the chosen range, we extend the range until the wavenumber corresponding to the largest Re(o)
is inside the range. We then select this wavenumber and determine the corresponding x_ on the

neutral curve. We continue this process until the relative change in x_ is less than 1076, we

13
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compute x”* following the same procedure.

6. Results

The solutions of (13-16) depend on a number of parameters, as defined in §2-4.
(Solutions on a finite interval depend also on h.) Restriction of the analysis to the pseudobinary
system Hg, ,Cd . Te reduces the parameters to the solidification rate Vi, liquid-side

temperature gradient G, bulkk CdTe mole fraction x ,. and rotation rate Q,. The

thermophysical properties of the liquid and solid (other than liquid density) are taken as
constants and evaluated using the functional forms given in Appendix A at the bulk CdTe mole
fraction and corresponding liquidus or solidus temperatures.

We present our results in figures 2 and 3 in terms of stability boundaries in the Vi~x_
plane for G =25 and 50K cm™' and several rotation rates Q,. The stability boundaries
consist of some portion of the morphological branch joined to an oscillatory convective branch.
The solid curve in each figure represents the minimum on the neutral curve corresponding to
morphological instability (x.). The dashed curve denotes the maximum on the neutral curve
associated with the onset of buoyancy-driven convection &2*).

For G =50K cm™, figure 2 shoWs the stability boundaries for Q.=0, 25, 50, and 100
rpm. Above the morphological branch, disturbances grow for some range of wavenumber a and
plane-front solidification is unstable. Similarly, below the convéctive branch appropriate to
each rotation rate shown, disturbances grow for some range of a. However, between the
morphological branch and the convective branch associated with each rotation rate (i.e., for
X2 < x_<x%), disturbances decay for all wavenumbers and plane-front solidification is stable.
Note that the morphological branch is unaffected by rotation, wherea's as Q increases, the
convective branch is shifted downward. The critical bulk CdTe mole fraction x** on the
convective branch is a decreasing function of Q, at any solidification rate, clearly indicating
the inhibitory effect of rotation on the onset of buoyancy-driven convection. Beyond the critical
solidification rate (denoted by Vlc") at which the convective and morphological branches
intersect, there is no stable range of bulk CdTe mole fraction X..- Thus, plane-front
solidification is unstable at all bulk CdTe mole fractions for sufficiently high solidification
rates. The critical solidification rate VIC' at which the morphological and convective branches
intersect occurs at higher X, with increasing rotation rate Q,. The critical value VIcr is

increased by more than a factor of ten at Q =100 rpm relative to the nonrotating case. We also
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note that the convective branch has a relatively shallow local minimum near Vi=1usec” 1 the
location of which depends only weakly on Q,. Thus, for a given rotation rate, operation at the
sohdlﬂcatlon rate corresponding to this local minimum allows plane-front solidification to be
conducted stably at the lowest value of X_.

For G =25K cm~! and Q,=0 and 100 rpm, figure 3 shows stability boundaries in the
V|-x_ plane analogous to those for G =50K cm~. As expected on the basis of the results of
Coriell et al. [13] for Pb-Sn without rotation, the morphological branch is shifted to the left,
reducing the range of solidification rates and bulk mole fractions for which plane-front
solidification is stable. On the other hand, the convective branch is shifted downwards relative
to the G =50K cm™! case, corresponding to an increase in the range of stable operating
conditions. We note that decreasing the temperature gradient has very little effect on the onset
of convection in a nonrotating layer, but reduces the range of stable bulk CdTe mole fractions by
more than twofold for a layer rotating at 100 rpm. The critical value of V, is higher by more
than a factor of five at Q=100 rpm relative to the nonrotating case, although the degree of
stabilization is less than the factor of ten predicted for G =25Kcm™ Although the reduction
in x_ has very little effect on the critical value of V1 at which the morphological and convective
stability boundaries intersect in the nonrotating case, for Q,=100 rpm the critical value of Vv,
decreases by a factor of three when the temperature gradient is reduced.

As discussed for the Pb-Sn case [37], at each value of Q. the onset of morphological
instability occurs via a short wavelength (large wavenumber) instability, while convection
sets in via dlsturbances with relatively longer wavelengths. In the following section this point

is discussed in the context of the mechanism by which rotation inhibits the onset of convection,

7. Discussion

During directional solidification of binary alloys cooled from below and characterized by a
linear equation of state, with rejection of a light solute at the liquid-solid interface (e.g., Pb-
Sn), the vertical temperature and solute gradients are stabilizing and destabilizing,
respectively, throughout the liquid layer. In the Pb-Sn System, the onset of buoyancy-driven
convection occurs via monotonically growing disturbances, as shown by Coriell et al. [13]. -
However, for the pseudobinary Hg,_,Cd,Te system, the CdTe gradient is everywhere
stabilizing, and adjacent to the liquid-solid interface there can exist a sublayer in which the

thermal stratification is destabilizing. In this system, the onset of convection occurs via
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oscillatory disturbances. We note that, as shown in Figures 2 and 3, the system is unstable at
the indicated values of GL for all V, when X, is sufficiently small, corresponding to the absence
of a stably stratified thin liquid layer adjacent to the interface for small X, .

For Pb-Sn alloys we have shown [37] that significant suppression of the onset of
buoyancy-driven convection occurs at modest rotation rates, and is due to the well-known
Taylor-Proudman mechanism. According to the Taylor-Proudman theorem [36], steady motion
parallel to the axis of rotation in a uniformly rotating inviscid fluid is prohibited. If this
theorem applied to viscous fluids, steady convection would be prohibited, since cellular
convective flow must have a vertical component. Instead, in viscous fluids the onset of steady
convection is inhibited, with the degree of inhibition (expressed as an increase in x_)
increasing with rotation rate. Although the Taylor-Proudman theorem strictly applies only to
steady flow, the Coriolis acceleration also suppresses the oscillatory onset of buoyancy-driven
convection during directional solidification of Hgy-xCd,Te as shown in §6. It is not surprising
that the morphological instability is unaffected by rotation since it occurs at very short
wavelengths, with the motion nearly perpendicular to the solidificétion front (i.e., aligned with
the rotation axis).

For a horizontally unbounded fiuid layer in which density depends linearly on temperature
and composition and no phase change occurs, a linear analysis [45] shows that Coriolis effects
generally inhibit the onset of convection (by the Taylor-Proudman mechanism). However, for
some combinations of Pr, Sc, and the dimensionless rotation rate (characterized by a Taylor
number Ta) and solute and temperature gradients (characterized by solutal and thermal
Rayleigh numbers Rag and Ray), rotation destabilizes the layer (on a linear basis) relative to
the nonrotating case. This occurs only when convection sets in via oscillations and the natural
frequency of a buoyant fluid element is tuned (by” rotation) so that the critical Ra; has a local
minimum as a function of Ta. With linear gradients and no phase change, this destabilization is
found for Pr and Sc both less than unity [45], although there is no apparent reason why it
cannot occur under other conditions when onset is via an oscillatory mode. We have found no
such destabilization by rotation for the solidification of Hg,_,Cd, Te.

Even though our analysis is limited to horizontally unbounded layers, work for single-
component fluids not undergoing phase change [48,49] suggests that for fixed finite aspect
ratios (ratio of mold radius to height) our predictions will be qualitatively ‘correct if Qg R, /g

(a Froude number, where Ro is the mold radius) is sufficiently small. For the onset of thermal
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convection in rotating water or mercury layers heated from below, the excellent quantitative
agreement between linear stability theory for a horizontally unbounded layer [41-43] and
experimental work for finite aspéct ratios [43,50,51] clearly demonstrates the potential of the
Coriolis acceleration to suppress buoyancy-driven convection in a rotating fluid.

The results of a linear stability analysis are subject to the caveat that even when
infinitesimal disturbances are predicted to decay, larger disturbances might grow. Indeed, for
“rotating fluid layers heated from below, the onset of thermal convection can occur at lower
Rayleigh numbers than predlcted by linear theory [52-54]. However, in that case accounting
for disturbances of noninfinitesimal amplitude modifies only the degree of stabilization
predicted.

The modest rotation rates that can significantly inhibit the onset of convection in the
Hg,_,Cd,Te and Pb-Sn systems make uniform rotation about the vertical a good candidate for
experimental verification. Experiments should be conducted with completely filled cylindrical
molds, insulated on the vertical surface, and mounted on the axis of a rotatlng horizontal
turntable. If these precautions are not taken, the Coriolis-related stabilization may be
overwhelmed by other effects. For example, if the liquid's top surface is in contact with a gas or
vacuum, it and the liquid-solid interface will be nearly paraboloidal, which may lead to radial
segregation in the solid for high rotation rates or large mold radii. Cooling the vertical surface
leads to a radial temperature gradient and centrifugal effects. For these reasons, our results
cannot be compared to earlier experimental work [30-33].

We note that the experimental work of Miiller (23] and Weber et al. [24] focuses on the
effect of rotation on the time-dependence of the supercritical flow, with no information given on
suppression of the onset of motion. Furthermore, althbugh these authors concluded that the
Coriolis acceleration is key to eliminating striations at high rotation rates, their experimental
design complicates the separation of Coriolis effects from the "pseudo-gravitational" effects
associated with high centrifugal accelerations.

Finally, Antar [55] has recently presented a linear analysis of the onset of convection in a
fluid layer cooled from below, using an approximate equation of state for Hg,_,Cd,Te. Although
this work purports to consider "convective instabilities in the melt for solidifying mercury
cadmium telluride", it differs from ours in that it includes no phenomena associated with
solidification (existence of a moving or deformable interface where phase change occurs,

nonlinear basic state solute stratification due to rejection or preferential incorporation at the
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interface, latent heat effects, etc.) Comparison to its results is further precluded since the
linear basic state thermal stratification and the definition of the temperature difference AT
across the fluid layer are inconsistent. Specifically, the bottom temperature (see Antar's eqgn.
(1) is T, - AT, which is inconsistent with the definitions of T, (temperature where op/aT is
zero, determined by the equation of state) and AT. Pyt differently, Antar defines AT as the
temperature difference across the layer, (e.g., AT = Tmp-Tbottom‘= ,T(d)- T(O)’). His
temperature profile, however, yields T(d) =T,~(d,-d)aT /dq and T(0) =To~AT, from which it
follows that [T(d) - T(0)| = d AT /d,, which is inconsistent with the definition of AT. This error
vitiates the analysis, which uses a thermal Rayleigh number based on a temperature difference
inconsistent with the basic state. That this inconsistency is not simply an apparent one due toa
typographical error is confirmed by reference to an earlier Paper [56] which uses the same
basic state and disturbance equations. A different (and very unusual) definition of AT (related
to the overall temperature difference by a constant dependent on the top or bottom temperature;
see figure 1 of [56]) was used to maintain consistency. That definition of AT was the only one
compatible with the basic State, and hence with the analysis and results. Unfortunately, in

reference 55, AT is defined as the overall temperature difference, which is wrong.
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Appendix A

The thermophysical properties of the liquid and solid (other than the density of the liquid)

are taken as constants evaluated using the functional forms shown below at the bulk mole

fraction and corresponding liquidus or solidus temperatures T, and Too)-

lig
We have taken the density of solid Hg,_,Cd,Te as

S 1_§, (A1)

pHgTe

a.
pS pCdTe
where { = XMegre /M is the CdTe mass fraction, the molecular weights of CdTe and HgTe are

Mcgre= 240 g/ mol and MHgTe= 328.2g/mol, M= XMegre+(1- x)MHgTe, and pCd_r.e and p

HgTe
are the solid densities of pure CdTe and HgTe, respectively, represented by

Pedre™ lo+ llT (A2a)
and

Pugre= %+ 0T (A2b)

where the coefficients A; and ¢, are determined by least-squares fits to the experimental data of

Glazov et al. [57] and Mokrovskii and Regel [39], respectively. The values of A; and ¢, are

Ao=5.820gcm™3 A=-8.095x1075 gem=3K-"
% =8.201gcm™3 ®;=-1230 x10* gcm=3k-!

The viscosity is represented over the entire range by

v=1x10"2 exp(®,+®,/T) cmZsec™!, (A3)
where ®y=~3.401 and ®,= 3445 K are computed by least-squares fit to the experimental data
of Glazov et al. [S8] for pure CdTe. Due to the lack of experimental viscosity data for HgTe, we
use (A3) for the viscosity of Hg1_xCdee, independént of combosition.

The thermal diffusivity of liquid and solid Hg,_,Cd,Te are approximated by

k.= (Eo +Enx "2+ Epx)In(T/K) - (Uy + Uyx'/24 U,x), (Ada)
2 -
Ks= D TSy +5,x2+5,x) (A4b)
=0

. where the coefficients

Eg=0.104 cm2sec! E,;=-0.146 cm?sec™!

19



3




L

'
‘i
'

o

|
I

il )

I

i

t

Qi

i
i

"
Li

R i

L EDM

il

[

nm
4

L0001

an -

i

£zl

E,=0.118 cm?sec™! Ug=0.668 cm2sec-!

- U;=-0.941cm?sec! U,=0.783 cmZsec™!
Sgo=-5.945x1073 cm2sec™! S,0=1698x10"2 cm2gec™!
S,0=-0.114 cm?sec-! Sp1=-7.148x1073 cm2sec~1k-!
$11=1646x107* cm2sec! S21=4.475x107* cm2sec-K !
Spz=-7-829x1078 cmzseé“K“2 S$,5=1969x107 cm2sec-1K-2

S,5=-4.120x1077 cm2sec-1K-2

are determined by least-squares fit to the experimental data of Holland and Taylor [57].

The specific heat of liquid Hgl_xCdee is represented by

ny

2
Co (T,X) = Z q; X' (T-943K)l, (AS)
i=0 j

[[]
le]

The coefficients g;found by Ieast-squareé fit to the calculated specific heat of Su [60] are

Qoo= 65.08 JK~T mol™! | Ggy=-0.101JK~2 mol~!
Qo2=3.961x107* JK~3 mol-! G1p= 1648 JK™! mol™!
4,,=7.004 x 1073 JK~2 mol-! U= -5.044 x 1073 JK " mol-? |

where we have used the relation 1 mol = 2 g-atom for the pseudobinary system Hg,_, Cdee to
convert Su's data (in cal K™! g-atom") to JK™' mol™.
The specific heat of solid Hg,_,Cd Te is taken as

Co 5= (1- x)cp's,HgTe +XCp 5 cdTer (A6)

where the specific heats of pure HgTe and CdTe vary with temperature [61] according to

o S HgTe = [52.09 +9.08x10°3 (T / K)] JK-"mol-! (A72)
and

Cos.caTe = [40.0 +3.3x102(T/ K)] JK-"mol ", (a7b)

The latent heat of fusion is approximated by

L(X) = (1— X)LHgTe + X Lche y - (A8)
where Lygre =3.6x1 044/ mol and Lygre = 4x10%J/ mol are used for the pure components
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[61]). The interfacial energy is estimated by comparing Hg,_,Cd, Te and InSb (in reference 62
Ge and InSb are compared to estimate the interfacial energy of InSb)

L 2% (A9)
OHg, ,Cd,Te = 2 L | Sinsbr
° Hg, ,Cd,Te InSb

where the latent heat of fusion per unit volume for Hg,_,Cd,Te is taken to vary linearly with
CdTe mole fraction (A8), a, = 6.4797 A for InSb, and a, = 6.465 A is.used for Hg,_xCdee
independent of x [58]. Here the surface tension is taken as Opsp = 8.5 x 1076y cm‘z, and the
latent heat of fusion Per unit volume of InSb is L = 1.20 x 103 J cm™3, The capillary coefficient
is then computed from

| ¥=oq, h , (A10)

9, ,Cd,Te L

where T is the liquidus temperature for a given bulk mole fraction of CdTe in the liquid.

We determine the liquidus and solidus temperatures

Tiig = (943 + 681 x-372x3) K , (A11a)
Tso = (943 + 202 x - 150 x2 + 324 x3) K, (A11b)
the liquidus slope '
m_ = (681 - 745x) K , (A12)
and the segregation coefficient
k=x(0.30-2.24x1073K"T__+2.67 x 1078Kk272 ) forx>0.1,  (A13a)
=374 forx < 0.1, (A13b)

as functions of CdTe mole fraction by least-squares fits to data of Szofran and Lehoczky [63].
Finally, the solute diffusion coefficient is taken as D, =55x10% cmz/sec, the value most

commonly used in the literature [3].
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Figure 1.
Figure 2.
Figure 3.

Figure Captions

Schematic depiction of the stability boundary.

V;-x_ stability boundaries for G =50K cm™ with Q = 0, 25, 50, and 100 rpm.
V;-x_ stability boundaries for G =25K em™ with € = 0 and 100 rpm.
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- Abstract
The convective and morphological instabilities in a horizontally unbounded binary liquid

undergoing directional solidification by cooling from below are studied by means of linear

1

stability analysis. The possibility of using steady uniform rotation about a vertical axis to

(

!
|

suppress the onset of buoyancy-driven convection is considered for both plane-front and

dendritic solidification.

For dilute Pb-Sn alloys, our results clearly show that the onset of convection in a

horizontally unbounded layer undergoing plane-front solidification can be suppressed

significantly at modest rotation rates. Specifically, plane-front solidification is linearly

A

stable at higher Sn concentrations in a rotating configuration than in a nonrotating one. The

= predicted inhibitory effects of rotation on cohvection are discussed in terms of previous
= experimental and theorstical studies of the effect of rotation on the onset of buoyancy-driven
nd convection in single-component fluids heated from below and in binary fluids subject to
‘E_%-__%: thermal and solutal stratification.

. We also consider the stability of one-dimensional plane-front solidification of the
- pseudobinary Hg,,Cd, Te system (of considerable importance due to its wide application in the
= fabrication of electro-optic detectors) in Which the liquid density does not depend
= monotonically on temperature (e.g., has a local maximuﬁw) for some range of the bulk solute
% composition. In contrast to the normal case where the density depends monotonically on
E temperature and composition (e.g., the Pb-Sn alloys considered by Coriell et al. (1980)),
‘—i;- for certain combinations of the operating parameters (solidification rate, nominal liquid-
= side vertical temperature gradient, and bulk solute concentration) there can exist a critical

value of the bulk mole fraction (C..) below which plane-front solidification is unstable at all

il

dimensionless solidification rates y, whereas in the normal case plane-front solidification at

L

any C_ Is linearly stable for all sufficlently small dimensionless solidification rates.

(o

Moreover, when the density varies nonmonotonically with temperature, there can exist a

critical value of the dimensionless solidification rate y. such that for y> y, plane-front

Ui



T iv

solidification Is unstable for all C,. In this case, for y < v there Is a finite range of C_ for
which plane-front solidification is stable. This latter result differs from the normal case,
for which at all dimensionless solidification rates, plane-front solidification is stable for all
values of C_ lying below some critical value. The stability boundaries and neutral curves,
differing qualitatively from those for the. normal case, are discussed in terms of the existence
adjacent to the liquid-solid interface of a sublayer In which the thermal stratification is
destabilizing. For Hg,_,Cd,Te, our results show that uniform rotation at modest rotation rates
can significantly suppress the onset of buoyancy-driven convection.

For a binary liquid undergoing solidification by cooling from below, we assess the
stability of the one-dimensional dendritic solution. The mushy zone, consisting of liquid and
solid phases, is modeled as a porous medium with anisotropic permeability. The local
porosity, as well as the location of the boundaries separating the solid from the mushy zone
and the mushy zone from the liquid, are taken to be dynamical variables. The basic state,
computed using a thermodynamically self-consistent nonlinear model of solidification, exists
for only some combinations of the operating parameters (solidification rate, nominal vertical
temperature gradient, and bulk solute concentration). The dendritic solution also exists
under conditions for which plane-front solidification is linearly stable with respect 1o
morphological disturbances. This point is discussed in the light of previous work on
nonlinear morphological instability. A division of the parameter space according to the
existence and stability of solutions corresponding to plane-front and dendritic solidification
is presented and discussed for the Pb-Sn system. Uniform rotation is shown to be less

stabilizing than in the plane-front case.
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CHAPTER 1
Introduction

1.1. Motivation and Previous Work

Many solid materials of practical interest are prepared by directional solidification of
binary and multicomponent llqulds Examples include high-strength, hlgh -temperature
alloys for use in turbine blades, electronic and photonic materials, and protein crystals for
use in x-ray crystallography.

In those applications in which the goal is to produce large, nearly perfect slrlgle crystals,
it is frequently desired to achieve "plane-front™ solidification. In such a situation, the
liquid-solid interface remains planar, the temperature, concentration, and pressure fields
are one-dimensional with their gradients normal to the interface, and the fluid motion (due
solely to shrinkage) is in the direction of the interface motion and independent of position.
The process Is steady in a reference frame moving with the interface. It is easily shown that a
necessary condition for the existence of this steady one-dimensional state is that the density
gradient be parallel or anti-parallel to the gravitational acceleration. Even when this
necessary condition is satisfied (e.g., by cooling the liquid from abové or below, rather than
from the side), howevér. several instabilities can cause departures from the nominally
steady one-dimensional plane-front case.

First, the liquid-solid interface is subject to a morphological instability (Mullins &
Sekerka 1964) deforming the planar interface and ultimately leadmg to formation of a two-
phase "mushy zone" of dendrites and inlerdendrmc liquid. In turn, departures from one-
dimensionality and steadiness in the mushy zone result in nonuniform solute distribution in
the solidified material. Second, the density'of a binary liquid depends orl both temperature and
composition. When a liquid is solidified by cooling from below, preferential rejection or

incorporation of solute at the interface is potentially destabilizing if the solute-enriched (or
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depleted) liquid at the interface is less dense than the warmer overlying bbl’k liquid. This
solute gradient can overcome the stabilizing temperature gradient, leading to buoyancy-
driven convection in the liquid, thus providing another mechanism, besides molecular
diffuéion. for redistributing solute from the interface into the bulk liquid.

Convective and Vmorphological instabilities in a binary liquid undergoing directional

solidification were first studied by Coriell et al. (1980). They showed that the buoyancy

force does not sensibly alter the criterion for onset of the morphological instability, which
occurs at shorter wavelengths than does the convective mode. Subsequent work has been
reviewed by Glicksman et al. (1986) and Sekerka & Coriell (1987); recent work includes
papers by Polezhaev (1988), Muller (1"988). Young & Davis (1989), Huppert (1990),
Davis (1990), and Worster (7199'1)7. |

Buoyancy-driven convection during directiona! §olidiﬁcation of binary alloys has been
shown to be the dominant factor in the formation of “freckles”, *channel segregates”, and
other macrosegregation defects deleterious to the mechanical properties of directionally
solidified alloys. The formation and characterization of freckles in nickgl-based superalloys
were first studie& éxperihentally by Giamrei & Kear (1970). Following thelr work, Poirier
et al. (1981) Iinvestigated macrosegregation in electroslag ingots, showed that convection in
the melt results in freckling in the solidified material, and suggested fhat rotation might
reduce freckling. Sarazin & Hellawell (1988) have experimentally demonstrated the
formation of freckles in Pb-Sn, Pb-Sb, and Pb-Sn-Sb lngoté. Specifically, compositional
convection, in the form of discrete plumes emanating from chimneys in a mushy zone of
dendritic crystals, has been observed by Copley et al. (1970) and Chen & Chen (1988) in
laboratory experiments using transparent aqueous ammonium chloride solutions. The
resulting convection leads to freckles strikingly slmilar to those found in ingots cast of
metallic alloys. Ridder et al. (1981) studied the effects of fluid flow on macrosegregation in
nominally axisynilmetricr ingots and showed that melt convection results in macrosegregation

in the solidified materials. In a theoretical study of a binary alloy solidifying radially
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inward, Maples & Poirier (1984) concluded that macrosegregation results from mushy-zone
convection driven by nonuniform temperature and solute distributions. A recent review of
the effects of buoyancy-driven convection on macrosegregation in binary and pseudobinary
systems has been given by Miller (1988). In particular, much attention is currently
focused on the questions of when and how the freckles and channel segregates and other
macrosegregation defects are formed, with the main goal being to grow materials that are free
of such macrosegregation defects resulting from convection during solidification.

One means by which the onset of convection can be inhibited in a density-stratified fluid
layer is to subject the layer to a magnetic field aligned parallel or perpendicular to the
stratification (Mdller 1988). For horizontal Pb-Sn layers solidified from below at several
growth velocities, Coriell et al. (1980) showed theoretically that the critical Sn
concentration above which instability occurs can be increased an order of magnitude by
applying a vertical magnetic field of the order of one tesla. This technique requires that the
liquid be an electrical conductor, and so is applicable to metallic alloys, semiconductors, and
aqueous solutions.

Macrosegregation might also be controlled by increasing or decreasing the magnitude of
the gravitational acceleration or changing its direction. Alexander et al. (1989) and Heinrich
et al. (1989a-b) theoretically studied the effect of reduced gravity on macrosegregation in
directionally solidified alloys. These authors suggested that macrosegregation in alloys can be '
reduced by solidification in a low-gravity eanronment. Miller (1990) and Weber et al.
(1990) have recently discussed solidification under conditions where the magnitude of the
body force is greater or less than that of normal gravity.

Both gravity and an external magnetic field are body forces which act on the liquid. As
opposed to contact forces such as 'pressure. viscous stress, and surface tension, which act on
the surfaces of a fluid element, body forces act on the mass of a fluid element. Hence, their
local strengths are proportional to the local fluid density. In addition to gravitational and

magnetic body forces, there are other "pseudo-body forces” which manifest themselves as



fictitious accelerations (centripetal and Coriolis) when the reference frame to which the
fluid motion is referred undergoes steady rotation relative to an inertial frame. (An
additional fictitious acceleration, with which we will not be concerned, manifests itself if the
rotation of the noninertial frame relative to the inertial frame is unsteady.) Although these
accelerations do not correspond directly to forces (as in the case of the gravitational
acceleration), they have the same- mathematical form as accelerations associated with body
forces, and can have dynamical consequences equally as profound as the gravitational and
magnetic forces discussed above (Greenspan 1968). In light of this, and the fact that
modification of the gravitational field or Imposition of an external magnetic field may not
always be feasible, the possibility of using rotation to suppress the onset of convection in a
liquid undergoing directional solidification is of interest.

Several effects of rotation on solidification have been discussed by Schulz-DuBois
(1972). The experiments of Kou (1978), Kou et al. (1978), Sample & Hellawell (1984),
Maller (1990), and Weber et al. (1990) have shown that rotation can significantly reduce
the degree of macrosegregation in binary alloys directionally solidified under plane-front or
dendritic conditions. Kou and Kou et al. studied the effect of steady rotation about a vertical
axis on freckle formation in Sn-Pb alloys. Sample & Hellawell considered solidification of
the transparent alloy NH,CI-H,0 in a crucible rotating about an axis inclined between 0 and
30 degrees with respect to the vertical. Maller (1990) and Weber- et al. have studied the
effect of rotation on the growth of Te-doped InSb crystals,‘and have shown that striations can
be suppressed at sufficiently high rotation rates. These studies show that the degree of
macrosegregation (freckles and striations) can be significantly reduced by rotation.

There are two means by which steady rotation about a fixed axis can influence the motion
of a fluid. In terms of a reference frame rotating with constant angular velocity © about an
axis, these correspond to the centripetal and Coriolis accelerations, for which the terms

p xQxr and 2p Qxu, respectively, are added to the momentum equation. Here, ris the
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position vector measured from the axis of rotation, u is the local fluid velocity relative to the
noninertial reference frame, and p is thé local density of the liquid.

Previous theoretical studies of the effects of rotation on the onset of buoyancy-driven
convection have been restricted to cases where no solidification occurs. For a horizontally
unbounded layer of a single-component, ﬂuid. Chandrasekhar (1953), Chandrasekhar &
Elbert (1955), and Niiler & Bisshopp (1965) have shown that steady uniform rotation
about a vertical axis can significantly inhibit the onset of convection, with the Coriolis-
related Taylor-Proudman mechanism (Chandrasekhar 1961) playing the dominant role. The
effects of centripetal, Coriolis, and gravitational accelerations on convection in horizontally
confined rotating fluids in cylindrical containers of various aspect ratios were considered In
an early series of papers by Homsy & Hudson (1969, 1 971a-b, 1972). More recently, for
a single-component fluid Weber et al. (1990) have computed buoyancy-driven flows
equivalent to those (hat can be driven by a tgmperature gradient maintained between the ends
of an otherwise insulated right circular cylinder rotating at constant angular velocity about
an axis perpendicular to and intersecting the cylinder axis but not passing through the
cylinder. Three-dimensional computations, in which the variation of the magnitudé of the
centripetal acceleration QxQxr along the cylinder axis was neglected (a good approximation
when the cylinder length is small compared to the shortest distance between the axis of
rotation and the cylinder), were performed with the term accounting for the Corlolis
acceleration 2Qxu either included or omitted. Weber et al. found excellent agreement
between experiment and computation when the Coriolis acceleration was included. |

For a binary fluid, Pearistein (1981) has shown that the Coriolis acceleration can
either stabilize or destabilize a horizontally unbounded layer, dependirng on the values of the
Prandtl and Schmidt numbers, the dlmengionless rotation rate (expressed in terms of a
Taylor number), and the dimensionless temperature or solute gradient (expressed in terms
of thermal and solutal Rayleigh numbers). Other work concerning the effect of rotation on

doubly-diffusive convection in binary fluids (with no phase change) has been reported by



Sengupta & Gupta (1971), Masuda (1978), Antoranz & Velarde (1978, 1979), Schmitt &
Lambert (1979), Riahi (1983), Worthem et al. (1983), and Bhattacharjee (1988a-c).

1.2. Overview of the Dissertation

The purpose of the present work is to investigate the onset of morphological and
buoyancy-driven convective instability in a binary liquid undergoing directional
solidification and to identify the mechanism by which Coriolis effects affect the onset of
buoyancy-driven convection. We consider fhe étability of plane-front solidification of a
binary alloy (Pb-Sn) and the pseudobinary mercury cadmium telluride system, and the
dendritic solidification of Pb-Sn. '

The dissertation is organized as follows. In Chaptéf 2, the convective and morphological
instabilities in a binary liquid undergoing plane-front solidification by cooling from below
are studied. The effects of rotation on the onset of buoyancy-driven convective and
morphological instabilities are considered using a linear stability analysis. Results for dilute
Pb-Sn alloys are presented and discussed.

in Chapter 3, we use a linear stability analysis to study the onset of instability in binary
liquids which exhibit a density maximum in the interior, and solidify with a nominally planar
interface. We consider the stability of plane-front solidification of the pseudobinary
mercury cadmium telluride system (Hg,..Cd,Te, where x is the bulk mole fraction of CdTe)
from the melt. The effect of a steady uniform rotation about a vertical axis has also been
investigated, as for the Pb-Sn system. |

In Chapter 4, we use a linear stability analysis to study the buoyancy-driven convection
in the liquid and mushy zone and to investigate the effects of rotation on convective instability
for alloys solidified dendritically by cooling from below. The mushy zone, consisting of
dendrites saturated by interdendritic liquid, is modelled as a porous medium with ani’sdiropic

permeability. The local porosity, as well as the locations of the mushy-zone/solid and
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liquid/mushy-zone interfaces are taken as dynamical variables, and so are determined as part
of the solution. The analysis is illustrated by results for the Pb-Sn system.

The notation is generally consistent throughout the dissertation excepting the usage of C
and its subscripted variants as composition variables, which are defined when first used in
each Chapter. The numerical techniques employed in each Chapter are generally similar, but

differ in important details, and hence are explained in full in each case.



CHAPTER 2

Coriolis Effects on the Stability of Plane-front
Solidification of Dilute Pb-Sn Binary Alloys

2.1. Introduction

During directional solidification of alloys, it is frequently desired to produce large single
crystals with very low densities of macrosegregation defects and other imperfections. In
principle, this can sometimes be achieved by "plane-front solidification, in which the melt-
solid interface remains perfectly planar. In such a case, the solidification process would be
steady in a reference frame moving with the interface, and the only spatial variation would be
in a direction normal to the interface. However, in real systems, several instabilities can
cause departures from the nominally steady and one-dimensional plane-front case. -

Buoyancy-driven convection occurring during directional solidification of binary alloys
leads to the formation of freckles ahd other macrosegregation defects deleterious 10 the
mechanical properties of directionally solidified alloys. In particular, much attention is
currently focused on the questions of when and how the freckles, channel segregates, and other
macrosegregation defects are formed, with the main goal being to grow materials that are free
of such macrosegregation defects resulting from convection during solidification.

The possibility of using steady uniform rotation about a vertical axis to suppress the
onset of buoyancy-driven convection during solidification of a binary alloy is considered
using a linear stability analysis. The prec_iicted inhibitory effects of rotation on convection
are discussed in terms of previous experimental and theoretical studies of the effect of
rotation on the onset of buoyancy-driven convection in single-component fluids heated from
below. The plane-front solidification of Pb-Sn binary melts, for which the density depends

monotonically on temperature and composition, is considered.
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,In this Chapter, we use linear stability analysis to study the effect of the Coriolis
acceleration on convective and morphological instability for Pb-Sn alloys which solidify with
a nominally planar interface. This work serves to identify the mechanism by which Coriolis
effects affect the onset of convection in solidifying binary alloys. The analysis is illustrated

by results for the Pb-Sn system.

2.2. Basic State and Linear Disturbance Equations
We adopt the mode! of solidification used by Coriell et al. (1980), in which the
Oberbeck-Boussinesq equations govern motion in the liquid. In a reference frame translating
with the nominally steady velocity (V) of the moving interface and rotating “rlth constant

angular velocity Q, as shown in figure 2.1, the basic state

u = -Ps

u =(0,0, PLQVI)' , (2.1)
mC..

T.= TM+—L—k _LLPsV [1 exp( - _S_Lpt.ok )] (2.2)

C = -k _ sV

C.=C. [1+ K exp( PLoDLz)]' (2.3)

?s'—‘TM'F—'L—m c“+x‘§$[1—exp(—&2)], (2,4)
k Vl Kg

is the same used by Coriell et al., where u, i, (_ZL, and ?s are, respectively, the basic state
velocity (referred to the moving frame). temperature and solute concentration in the liquid,
and temperature in the solid, x| and Xs are the thermal diffusivities of the Ilqurd and solid,
respectively, D, is the diffusion coefficient, Ps is the solid density, p| o Is the liquid density of
pure lead at its melting point, C,, ls the bulk ooncentratron G is the hqurd side temperature
gradient at the planar Interface, V, is the nominal growth rate, k is the segregation
coefficient, m_ is the siope of the liquidus, T”! ris the r_rrelting temperature of Pb, &= pg/pLo- 1

Is the fractional shrinkage, Gs = (LV; + Gk, )/kg is the solid-side temperature gradient at the
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planar interface, k_ and kg are the thermal conductivities of the liquid and solid,
respectively, and L is the latent heat of fusion per unit volume. (All concentrations used in this
Chapter are weight percentages.) We note that the basic-state temperature distribution in
the solid (2.4) is valid only near the interface.

As in stability analyses of other flows subject to uniform rotation (Chandrasekhar
1953: Chandrasekhar & Elbert 1955; Niiler & Bisshopp 1965; Pearistein 1981; Nakagawa
& Frenzen 1955), the linear disturbance equations we use differ from those for the
nonrotating case only by addition of the Coriolis acceleration to the disturbance momentum
equation. (This approach neglects the consequences of density variation in the term
corresponding to the centripetal acceleration, and Is discussed in §2.6.) The equations

governing small disturbances in the liquid are

Veu=0, (2.5)
du 2$-va“+2nxu———2-uTgTL|-acchl +v Vu, (2.6)
ot PLo 19z
aT aT
—a_tL Ff—vl3¢+GLwexp(-p KLZ) KLV TL' (2.7)
Ly _ -&ivl—-L«uGcwexp(- z) D, V3G, (2.8)
ot PLo oz LO

where the dependent variables u, w, p, T, and C_ are, respectively, the disturbance values of
the velocity, its z-component, pressure, temperature, and concentratlon in the liquid. Here,
i, is the unit vector in the z-direction, g Is the magnitude of the earth's gravntatlonal
acceleration, v is the viscosity, ay and ac are the thermal and solutal expansion coefficients,
respectwely, G¢ -(k-1)psC Vll(kaODL) is the concentration gradient at the planar
interface, Q = Qg |, is the angular velocity, and Qo is a constant. The dnsturbance energy

equation in the solid is

aT. oT 2 .
TS (22
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where Tg is the disturbance temperature in the solid.

Taking the curl of (2.6) and the dot product of the result with I, we obtain an eduation

0w
Dz _ 05y .ﬂl 2Q, oaw _ V2 2.10
at po oz 05z =Y ( )

for the z-component of the vorticity, w,. After twice taking the curl of (2.6), the vertical

component of the resulting equation Is

3y L) 2+ 2
2 vy - p_LQVaazVzw,rzﬂosz:wgvlTL+aqgvch+uv4w. (2.11)

The disturbance boundary conditions at the interface are

u(x,y,0,1) = ev,ﬂ%‘l&, (2.12a)
v(x,y,0,1) = ev,i’l%l-ﬂ, (2.12b)
w(x,y,0,1) = -eﬁl%tzl-ﬂ. (2.12¢)
ow XY 0.8) - _ev, V2 (xyt), (2.12d)

T (x,y,0,t dTg(x,y,0,t GsViks
Lag(;{y,t) -k, L(azy ) 4 ke s(azy ) . %—L_LL“L _§_1_ n(x,y.1),(2.12e)

2
-\%—an(xyt)+V, CL(x.y.0.1) + ~_IL(_:L_). __Pob 3C (XVO‘) (2.12f)
LPLo ot ps(1-k) oz

TLxY.0.0) + G n(xy.b) = Ts(x.y,0) + Gg n(x.y.1), (2.12g)

TLxY.0) + G n(xy.t) = m_ Gg n(x.y.) +m_ CL(xy,0.0) + Ty ¥ ¥2n(x.y.1), (2.12h)

where n is the interface position and ¥ is the capillary coefficient.
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2.3. Nondimensionalization and Fourier ‘Decomposition
We scale the velocity, time, length temperature, concemration and vorticity with
x /H, H2/v, H, G_H, C., and x,_lH respectively, where H = DLIVl is the characteristic
length (assoclated with the destabilizing gradient of rejected solute, gge (2.3)), and write the
horizontal and temporal dependence of the dimensionless disturbancé quantities as exp(ot +
ia X + ia,Y), where a, and ay are the x- and y-components of the wavevector, and o is the

temporal eigenvalue. Substitution into (2.7)-(2.11) ields

o(D2- a®)W - _2_0(02 2)W—-F!aTa e_- Rag Le a® CL+(D2 2) W -y DQ; ,(2.13)

o0z - £ D0z = 0 DW + (D? - a2) g, C(2.14)
Pro®_-ple DeL=(02-a2)eL-Wexp(—pLe 2), (2.15)
Sco % - p DX =(02—a2)x|_+%gWexp(—pZ) (2.16)
in the melt, and
Pr o 8g - Le D8g = x (D? - a%)8g (2.17)

in the solid. Here, Pr = v/x is the Prandtl number, Sc = v/D is the Schmidt number,
Le = DL/KL |s the LeWIS number RaT = a7gGH /(va) and Rag = uch H3/(D_v) are the
thermal and solutal Rayleigh numbers, respectively, Qo= ZQOH 2 |s the square root of the
Taylor number, p = pg/pLo is the density ratio, x = xg/x Is the lhermal diffusivity ratio,

and = = (1-k)k. The boundary conditions (2.12a-h) at the Interface become

W) =-€ ProB, (2.18a)
DW(0) =¢ Le a° B, (2.18b)
0,(0) =0, : (2.18¢)
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Scop = - K DOLO) + kg DOs(©) +Le (Kp-ki/x - 1/x) B, (2.18d)

(1-G)B =865(0)- 6,(0), (2.18¢)
(sco+kp)p =-ka(0)-=‘—prL(0), (2.18f)
(‘a Ty +m' ‘1)5——x|_(0)+9|_(0). (2.18¢g)

where W, X, Q;, and @ are, respectively, the amplitudes of the disturbances to the vertical
velocity, concentration, vertical vorticiiy, and temperature in the melt, B is the amplitude
of the disturbance temperature in the solid, and B (a constant) is the amplitude of the
disturbed interface position. Here we define dimensionless parameters k| = G k H/LD|,
ks = G kgH/LD|, m"= m Go/G, Ty = Ty¥/G H? and G = Gg/G(. For the far-field boundary

conditions, we foliow Coriell et al, (1980) and set all disturbances to zero
W=DW=0Q,=%=6_=0 as Z - oo, (2.19a)
85=0 as Z - — oo, (2.19b)

far from the interface.

2.4. Numerical Solution

Our objective is to find conditions under which infinitesimally small disturbances
neither grow nor decay for a finite number of wavenumbers, and decay for all other
wavenumbers. Disturbances which neither grow nor decay are said to be neutral. The
neutral disturbances can be of two types, depending on the imaginary part of . If the
imaginary part of o Is zero for a neutral disturbance, the onset of instability willlbe via
monotonically growing disturbances (steady onset). If the imaginary part of ¢ is not zero, the

neutral disturbance will oscillate in time (oscillatory onset).
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in the previous section, we formulated an eigenvalue problem for two systems of
ordinary differential equations on two semi-infinite interyals (in the melt and in the solid),
coupled by boundary conditions at the deformable interface. For convenience, we follow
Corie" et al. (1980) and solve the problem on a finite interval [-h,h], where 2h is the
dimensionless height of the computational domain. With regard to the far-field boundary

conditions at Z = * «, we set all disturbances to zero

W=DW=QZ=XL=8L=° atZ=h (2.20a)

in the melt and

6s=0 atZ=-h (2.20b)

in the solid. We have used h = 10. (For steady onset, we have checked a number of our
results using more accurate asymptotic boundary conditions applied at Z = + h derived
following Keller's (1976) procedure, and have found excellent agreement between the
eigenvalues computed using the two sets of boundary conditions.) Since we use Chebyshev
polynomials in our numerical solution, we scale the vertical coordinates in the liquid and
solid regions by z; = (2Z - h)/h and z, = (2Z+ h)/h, respectively, so that each region lies
between -1 and +1. The resulting system is then solved using a spectral Galerkin technique

developed by Zebib (1987). The problem is thus reduced to a matrix eigenvalue problem

As+cBs=0, (2.21)

. where ois the temporal elgenvalue, and the elemenls of the square matrices A and B depend on

a2- ay+ ay. the square of the horizontal wavenumber the bulk concentration C_, and the
other dimensionless parameters. The details are given in Appendix A.

in what follows, we characterize the stability of the nominally plane-front solution in
terms of the growth velocity V; and bulk concentration C... with all other parameters taken as

fixed. For each value of V,, we seek one or more critical values of C_, (denoted by C_, )} such
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that for C_ < C_,, disturbances decay for all wavenumbers, while for C. > C_.,disturbances
grow for all wavenumbers in some range. In order to determine the critical value(s) of C_,
we first determine the neutfal curve (C, versus the wavenumber a) separating those
combinations of C_ and a for which all temporal eigenvalues o lie in the left half-plane (a
stable basic state) from those for which at least one eigenvalue lies in the right half-plane
(an unstable basic state). To determine the bulk ccncentration on the neutral curve for an
arbitrarily chosen wavenumber a, we first guess a value of C.. and compute all eigenvalues o
using (2.21). If all eigenvalues have negative real parts, the value of C_ Is increased by
doubling the previous value; otherwise the new value of C.. Is chosen as half the previous
value. This process is continued until we determine two values of C.. between which at least
one sign change is obtained in the real part of the least stable temporal eigenvalue. The
concentration on the neutral curve is then determined using a bisection method.

To compute the critical concentration C. at which instability first occurs (i.e., the
minimum on the neutral curve), we arbitrarily choose a wavenumber and compute the
corresponding C,, on the neutral curve using the procedure described above. We then fix C.
at the value computed at the previous step and compute the eigenvalues o for a discrete set of
wavenumbers in a chosen range. From this set we select the wavenumber corresponding to
the o with largest real part. If this wavenumber is at an endpoint of the chosen range, we
extend the range to include the wavenumber corresponding fo the largest Re(s). We then
select this wavenumber and determine the ébrresponding C.. on the neutral curve. We

continue this process until the relative change in C.. is less than 1075,

2.5. Results
The solutions of (2.13)-(2.19) depend on fifteen dimensionless parameters, as defined

in §§2.2 and 2.3. To determine the stability of a basic state with a nominally planar

interface, numerical values of these parameters need to be specified. (Solutions on a finite

interval depend also on h.) It is therefore not possible to numerically éxplore the effects of
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more than a few combinations of these parameters on the onset of instability. In this work,
we have thus restricted ourselves to the Pb-Sn system which, due to the low melting points of
both components, has been the subject of several experimental studies. The parameter values
(other than Q) are as used by Coriell et al. (1980) at reference conditions corresponding fo
pure lead at its melting point. (T he diffusivity of Sn in Pb corresponds to an infinitely dilute
solution.) ‘

To test our code, we first considered the nonrotating case, and compared our results to
those of Coriell et al. Taking the liquid-side temperature gradient at the interface as
G =200 K cm-1, we computed neutral curves (C. versus a) for various values of the
solidification rate V;. The neutral curves were generally similar to those shown by Coriell et
al. The only qualitative difference was that, in our work, several new oscillatory neutral
curves were found to branch from steady neutral curves found by Coriell et al. and in the
present work. We believe that our detection of these additional oscillatory neutral curves
(which in each case lie well above the critical value of C_ and are hence of no practical
consequence) is due to use of a numerical technique which simultaneously computes a large
number of temporal eigenvalues at each combination of C_ and V,, as opposed to the shooting
technique of Coriell et al., which individually computes the temporal eigenvalues by a one-
point iteration scheme. The solid and dashes curves represent the steady and 6scillatow onset
of convection in each of the neutral curves.

For G =200 K cm-1, Q¢ = 0 rpm, and V; = 5 and 80 p sec-1, figure 2.2 shows neutral
curves similar to those obtained by Coriell et al. For Vi =35 usec-!, steady onset of
buoyancy-driven convective instability is found, and the critical concentration below which
the plane-front solidification is stable for all wavenumbers occurs on the convective branch,
as shown in figure 2.2(a). However, for V| = 80 n sec-1, morphological and oscillatory
convective neutral curves are obtained, and the critical concentration occurs on the

morphological instability curve, as shown in figure 2.2(b). Note that the critical
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wavenumber for the morphological instability mode is larger than that for the buoyancy-
driven convective mode.

For this temperature gradient, a transition between these two extreme cases is observed
for intermediate values of the solidification rate. Figure 2.3 shows a sequence of neutral
curves for increasing V;, beginning with figure 2.3(a) for V=5 pusec-! (figure 2.2a).
When the solidification rate is increased to Vi=125y sec-1, the morphological neutral
curve appears at much higher wavenumbers. For V| = 15 p sec-1, one of the buoyancy-driven
convective branches pinches off and disappears (figure 2.3c). Another branch pinches off by
V=20 p sec-! (figure 2.3d). As the solidification rate is further increased to
V, = 30usec-!, only one steady buoyancy-driven convective branch is left, and the critical
concentration has shifted to larger values (figure 2.3e). The steady convective branch
pinches off and becomes smaller with increasing solidification rate as shown in figure
2.3(f-h) for V, =35, 37.5, and 39.375 p sec-!, respectively. Finally, for V| = 40 p sec!
(figure 2.3i) the steady convective branch disappears and the minimum value of C_
(corresponding to the critical condition) occurs on the morphological instability branch. For
comparison, the extreme case V; = 80 u sec-1 (figure 2.2b) is shown again in figure 2.3(j).

For G = 200 K cm-! and V| = 30 p sec-1, figure 2.4 shows the neutral curves (C_-a)
for different rotation rates. Figure 2.4(a) shows the neutral curve for the nonrotating case
(identical to figure 2.3e). If the system is rotated at Q, = 90 rpm, the critical concentration
increases to higher values, as shown in figure 2.4(b). As the rotation rate is increased
further to Qp = 180 rpm, the steady convective branch pinches off, and becomes smaller for
Qo = 270 rpm as illustrated in figure 2.4(c-d). Finally, the steady convective branch
disappears, and the critical concentration bccurs on the morphological branch for Qg = 360
rpm.  The transition is similar to that shown in figure 2.3.

We present our principal results in terms of stability boundaries in the V;-C. plane.
For ease of comparison to the work of Coriell ef al. (1980), results are presented in terms of

dimensional variables. With G fixed at 200 K cm-1, figure 2.5 shows stability boundaries
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for Qg = 0, 100, 200, 300, and 500 rpm. For each value of Qo, the stability boundary
consists of some portion of the morphological branch (CZ, decreasing with increasing V,) found
by Coriell et al. (their figure 1), joined to a convective branch. The critical value of C_on
the convective branch is an increasing function of Q, at any value of V;, clearly indicating the
inhibitory effect of rotation on the onset of buoyancy-driven convection. We note that for
V; = 5 p sec-1, rotation at o = 500 rpm increases by slightly more than two orders of
magnitude relative to the nonrotating case the critical Sn concentration above which the
plane-front solution becomes unstable. We further note that the rﬁorpho|ogical branchv is
unaffected by rotation, whereas as Qo increases, the value of V; at which the onset of
instability shifts from the convective branch to the morphological branch decreases from
about 40 p sec-1 in the nonrotating case to about 27 p sec-1 fbrno = 500 rpm.

For each value of Q,, we see a local minimum near V;= 1 psec-1, with the minimum
shifting to smaller growth velocities and becoming relatively more shallow as Qg increases.
We note that the maximum relative stabilization by rotation occurs near the local minimum,
and that for Q, = 500 rpm, the critical bulk concentration of Sn is increased more than a
hundredfold. Although Coriell et al. (1980) noted a local minimum in the stability boundary
near Vy =1 p sec-! in the nonrotating case for the largest gravitational acceleration
considered, they offered no explanation for its existence. This minimum is a consequence of
the fact that as V; — 0, the concentration gradient G¢ = (k-1)psC..Vy/(kp oD) vanishes. As the
temperature gradient is independent of C_ and is stabilizing, the critical value of C_, must
ultimately increase as V; - 0. (Of course, the weight percentage of the solute, C_, cannot
exceed 100). As C. must initially decrease with increasing V,, there must be a local
minimum on the convective branch before C., can increase to join up with the morphological
branch of the stability boundary. This nonmonotonic dependence of C. on V; can be
interpreted in terms of the existence of four critical values of V; for certain values of C.
(In addition to the three shown in figures 2.5 and 2.6, we note that for sufficiently large Vp,

C.. ultimately increases on the morphological branch (Davis 1990).)
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As discussed for the nonrotating case by Coriell et al. (1980), at each value of Q, the
onset of morphological instability occurs via a short wavelength (large wavenumber)
instability, while convective Instability sets in via disturbances with relatively longer
wavelengths. In the following section this point is discussed in the context of the mechanism
by which rotation Inhibits the onset of convection.

For G_ =400 K cm-1, figure 2.6 shows stability boundaries (C_, versus V,), analogous to
those for G =200 K cm-1. Aside from a slight shift of the stabilfty boundaries to higher
values of C!, the results are qualitatively similar to those for G =200 K cm-'. In
particular, the onset of buoyancy-driven convection is suppressed but the morphological
instability is not influenced by rotation, and the critical value of C.. passes through a

minimum near V;= 1 usec-!.

2.6. Discussion

The remarkable stabilization obtainable at low growth rates (more than a hundredfold
increase in the critical value of C_ ét Vi=1psec ' can be achieved by rotating the layer at
500 rpm for the two values of G| considered) is undoubtedly due to the well-known Taylor-
Proudman mechanism, described by Chandrasekhar (1961). According to the Taylor-
Proudman theorem, steady motion parallel to the axis of rotation in a uniformly rotating
inviscid fluid is prohibited at any nonzero rotation rate. If this theorem were strictly
applicable to a viscous fluid, the onset of steady convection would be prohibited, since the flow
in convection cells must have a vertical component. Instead, in a viscous fluid, one sees an
inhibition of‘ the onset of steady convection, with the degree of inhibition (expressed here as an
increase in C_) increasing with Q,. That the onset of oscillatory convection is hardly affected
is due to the fact that the Taylor-Proudman theorem applies only to steady flows. It is also not
surprising that the morphological instability is unaffected by rotation. The morphological

instability occurs at very short wavelengths, so the motion is almost perpendicular to the
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solidification front (i.e., aligned with the axis of rotation). Hence, the Coriolis acceleration
does not sensibly affect the morphological instability.

For a horizontally unbounded binary fluid layer in which the density depends on
temperature and one composition variable, Pearlstein's linear stability analysis (Pearlstein
1981) shows that Coriolis effects generally inhibit the onset of convection (by the Taylor-
Proudman mechanism). Under some conditions, however, rotation can destabilize the layer,
depending on the values of Pr, Sc, the dimensionless rotation rate (characterized by a Taylor
number), and the dimensionless temperature or solute gradients (characterized by thermal
and solutal Rayleigh numbers). For conditions under which destabilization (on a linear basis)
occurs relative to the nonrotating case, instability sets in via an oscillatory mode, in which the
natural frequency of oscillation of a buoyant fluid element is tuned (by rotation) in such a way
that there is a local minimum in the critical value of Rar as a function of the dimensionless
rotation rate. This behavior was found (Pearlstein 1981) for Pr and Sc both less than unity,
although there is no apparent reason why such destabilization cannot occur under other
conditions when onset Is via an oscillatory mode.

Although Pearlstein (1981) found In the rotating doubly-diffusive case that
for Pr<1 <Sc (a condition satisfied in the present case, in which Pr = 0.023 and Sc = 81)
there can exist as many as three critical values of the solute Rayleigh number for certain
values of the Taylor, Prandtl, Schmidt, and thermal Rayleigh numbers, we have found no
evidence of such multivalued stability boundaries in the present calculations. As in the case

investigated earlier (Pearlstein 1981), it is possible that such behavior occurs in relatively

~small regions of the parameter space (G, V, etc.) and has gone undetected so far. As discussed

in § 2.5, however, figures 2.5 and 2.6 imply that for certain values of C. there exist four
critical values of Vj (including the unshown portion of the morphological branch).

Even though the foregoing analysis is restricted to a horizontally unbounded fluid layer,
the work of Homsy & Hudson (1971a) and Buhler & Oertel (1982) suggests that its

predictions will be qualitatively correct for finite aspect ratios (ratio of mold radius to
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height) if the parameter Q2 Ro/g (a Froude number, where R, is the mold radius) is
sufficiently small. For the onset of thermal convection in rotating water or mercury layers
heated from below, the excéllent quantitative agreement between classical linear stability
analysis for a horizontally unbounded layer (Chandrasekhar 1953; Chandrasekhar & Elbert
1955; Nakagawa & Frenzen 1955) and experimental work for finite aspect ratios (Nakagawa
& Frenzen 1955; Fultz & Nakagawa 1955; Goroff 1960) provides a clear demonstration of
the pptential of the Coriolis acceleration to suppress buoyancy-driven convection in a
rotating fluid.

Interpretation of the results of a stability analysis restricted to Infinitesimal
disturbances is obviously subject to the caveat that larger disturbances might grow, -even
though sufficiently small disturbances are predicted to decay. Indeed, it is known that for
rotating fluid layers heated from below, the onset of thermal convection sometimes does occur
(Veronis 1959, 1966, 1968) at lower Rayleigh numbers than predicted by linear theory.
However, in that case, accounting for finite (i.e., non-infinitesimal) amplitude disturbances
modifies the quantitative predictions of the theory; the basic qualitative prediction of
stabilization by rotation remains unchanged.

The relatively modest rotation rates required to significantly inhibit the onset of
convection in the Pb-Sn system make the proposed method an interesting candidate for a
program of laboratory experiments. (We note here that the experimental work of Maller
(1990) and Weber et al. (1990) focuses on the"effect of rotation on the time-dependence of
the supercritical flow, with no information given on the effect of rotation on the suppression
of motion. Furthermore, although these authors have concluded that the Coriolis acceleration
is key to the elimination of striations at high rotation rates, their experimental design
complicates the separation of effects of the Coriolis acceleration from the increased “pseudo-
gravitational” effects associated with the centripetal acceleration.) Experiments might be
conducted using a completely filled cylindrical mold, thermally insulated on the vertical

surface, and mounted axisymmetrically on a rotating horizontal turntable. If the liquid at the
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top of the rotating mold is in contact with a gas or vacuum, it will have a nearly paraboloidal
froe surface, on which the elevation above the point on the axis of rotation is
AZ= d‘(’,rzl(2g). Although this configuration is consistent with rigid-body rotation, it also
leads to a nearly paraboloidal solid-melt interface. For high rotation rates or large mold
radius, this will in turn lead to significant radial variations in the solidified alloy. Also,
cooling at the radial boundary leads 1o a radial temperature gradient, which in turn leads to
significant centrifugal effects. For these reasons, the results of the present analysis cannot
be compared to the experimental work of Kou (1978), Kou et al. (1978), or Sample &
Hellawell (1984), in which strong radial variations In macrosegregation are observed in the
solid. Experiments of the type proposed above were initiated some time ago by Copley
(1976) for the crystallization of ammonium chloride from aqueous solution.

Finally, we note that for many binary systems, plane-front solidification does not occur
at practical growth velocities, and that the morphological instability results in dendritic
solidification. In this case, rotation might also suppress buoyancy-driven convection in the

melt and interdendritic liquid; this possibility is considered for the Pb-Sn system in

Chapter4.
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CHAPTER 3

Stability of Plane-Front Solidification of a Binary Liquid for
which the Density Depends Nonmonortovnlcally oh

{

[}
i

il

Temperature, including Corlolis Effects

VI

3.1. Introduction

= In the previous work on binary liquids (e.g., the study of lead-tin alloys by Coriell et al.
- 1980) solidified by cooling from below (as in Bridgman growth), consideration was
restricted to the case in which the liquid density (p) depended linearly on temperature (T)
=

B and solute mole fraction (C), i.e.,

- P(T.C) = po[ 1 - a(T=To) - B(C-Co] (3.1)
% where Tg and C, are reference values. In general, the vertical variation of density is given by
- .

&= % _2dpdT 3pdC (3.2)
= 92 dTaz oz

%‘é so that a local density extremum can occur even if the density depends monotonically on each
-

- of the stratifying agencies (as in (3.1)), and the profiles of the stratlfymg agencues vary
% monotonically with the vertical coordinate 2. For example, when T increases linearly with
= increasing elevation above the liquid-solid interface (an excellent approxamatnon for many
=

systems; cf. §3.3) and solute is rejected from or preferennally incorporated into the solid,

= the steady one-dimensional temperature and solute profiles near the interface can be

ki

approximated by

Il

T(3) =To+G 2 (3.3a)

Iil\
3

¥ i

@) - c,,[1 " “Tk e‘VIZ’DL] (3.3b)
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where G, > 0 is the liquid-side temperature gradient at the interface, V| is the solidification
rate, D Is the solute diffusion coefficient, and k is the segregation coefficient. We see that
dC/d2 < 0 for k < 1 (rejection of solute) and dC/dz > 0 for k > 1 (preferential incorporation

of solute). From (3.2) and (3.3), we have

190 __ g 4 BViCs 1ok SMIZ/DL 3.4
Po 32 "o Tk (3.4)
so that if the inequality
BViCa 1-k ‘ ‘
“GLDL Kk >1 (3.5)

is satisfied, the density will assume a maximum value at

D oG Dk
2= “L'“[Bvlc il (3-6)

in the liquid, notwithstanding the monotonic dependence of pon T and C, and of T and C on 2.
The density can also depend nonmonotonically on Z if p(T,C) varies nonmonotonically
with one of the stratifying agencies, say T. Among the binary systems in which density does
not depend monotomcally on temperature are many dilute aqueous solunons. for which the
local density maxnmum |s assocaated wnh the 3.98°C density maximum of pure water (at one

atmosphere), and dilute solutions of cadmium telluride in mercury tellurlde As noted in

§§3.5 and 3.6, the density can also have more than one local extremum, even though the

temperature and solute distributions depend monotonically on 2.

Although ﬂurd layers having Iocal densrty maxrma have been the subjects of prevlous
studies of the onset of buoyancy-driven convection in water (Veronis 1963 Merker et al.
1979: Normand & Azouni 1992), directional solidification of a binary liquid differs in
several important ways. First, one must account for the deformable moving interface.
Second, in a fluid layer with a linear vertical temperature gradient, nonmonotonic dependence
of density on temperature eerresponds to a local density maximum in a single-component

fluid, whereas (3.2) shows that in the binary case with density depending on temperature and

@ ) W wWm W e s W W wml
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composition, the elevation where 3p/aT = 0 generally does not correspond to a local density
maximum. Moreover, it is well-known that in a binary fluid, onset of buoyancy-driven
convection depends on the individual stratifying agencies (temperature and solute in the
present case), rather than on the density gradient. (Turner 1973, Chapter 8). Although this
point has been recognized in analyses of convection in dilute aqueous solutions of NaCl (Foster
1972; Gebhart & Mollendorf 1978; dureshi & Gebhart 1986), the stability of plane-front
solidification of a liquid with a nonmonotonic dependence of density on temperature has not
been previously considered.

The effects éf rotation on convective and morphological instabilities have been reviewed
by Oztekin & Pearlstein (1992) and in Chapter 2 herein. In the linear stablity analysis for
Pb-Sn alloys, thé results of Chapter 2 show that the Coriolis acceleration suppresses
buoyancy-driven convection in the melt, and plane-front solidification becomes stable in a
larger range of solidification rate and concentration for any given temperature gradient.
Here, we investigate the effect of rotation on the onset of instability for Hg,_,Cd,Te
pseudobinary alloys.

We use a linear stability analysis to study the onset of instability in binary liquids which
exhibit a density maximum In the interior, and solidify with a nominally planar interface.
We also assess the potential of uniform rotation to suppress the onset of buoyancy-driven
convection. We consider the stability of plane-front solidification of the pseudobinary alloy
mercury cadmium telluride (Hg,.Cd,Te, where x is the bulk mole fraction of CdTe, herein
denoted by C.) from the melt. The growth of Hg,.,Cd,Te crystals is of considerable practical
interest because of the uses this material finds in the fabrication of infrared detectors and
other electro-optical devices. For these applications, crystal size and defect density are
critical, with the goal being to produce large single crystals with very high degrees of
uniformity and very low densities of macrosegregation defects and other imperfections. This
has led to a number of experimental (Galazkzi et al. 1981, Capper et al. '1 986) and thebretical

(Bourret et al. 1985; Kim & Brown 1989; Apanovich & Ljumkis 1991) studies of
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solidification of Hg,.,Cd,Te from the melt. For a more detailed discussion, the reader is
referred to the reviews by Micklethwaite (1981) and Capper (1989).

This Chapter is organized as follows. In §3.2, we present the governing equations and an
appropriate nondimensionalization. The one-dimensional basic state and linear disturbance
equations are given in §3.3. The numerical solution technique is described in §3.4. Results
for the Hg,.,Cd,Te pseudobinary system are presented in §3.5a and §3.5b for the nonrotating
and rotating cases, respectively, followed in §3.6 by a general discussion of the solidification

of binary liquids in which the density depends nonmonotonically on temperature.
3.2. Governing Equations and Formulation

3.2.1. Equation of State

For the solidification of mercury cadmium telluride, we have used an equation of state
based on the experimental data of Chandra & Holland (1983) and Mokrovskii & Regel
(1952). Since the density of pure HgTe liquid does not depend monotonically on temperature,
the density of Hg,.,Cd,Te will also depend nonmonotonically on temperature for sufficiently
small CdTe mole fractions. The variation of liquid density with temperature and composition

is represented by bivariate polynomials of the form

3 4. .
pL(T.C) =2, 2, byC'(T-1030K)! for T < Tpnax(C) (3.7a)
i=0 J=0
and
3 1
o, (T.C) = 2, 2, d;C'(T-1030K)! for T > Trax(C) (3.7b)
1=0 =0
where
3
T.m.x(f:)='2.o rc' | (3.8)
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is a polynomial fit to the largest temperature (as a function of C) for which density data are
available in the literature. The linear dependence of density on temperature (3.7b) for

T>Tmax(C) is chosen to match pL and dp /oT at T,,. Details are given in Appendix B.

3.2.2. Dimensionless Governing Equations

We adopt the model of directional solidification used by Coriell et al. (1980), in which
the thermophysical properties in the liquid are taken to be constant, except for the density.
The spatial and temporal variation of liquid density according to (3.7a,b) will be accounted
for in the buoyancy term and neglected everywhere else.

We scale the velocity, time, length, pressure, solute mole fraction, and the difference
between the local and interface temperatures with Vi, HIVy, H, p i ovVi/H, C_, and G H,
respectively, where H = D /V, is the characterfstic length associated with the solute gradient
at the interface, V; is the nominal solidification rate (With dimensions of velocity), x_ is the
thermal diffusivity of the liquid, D is the binary diffusivity of CdTe In the liquid, v is the
kinematic viscosity, C,_ is the bulk value of the solute mole fraction, p  is the liquid density
at the bulk value of the solute mole fraction and the corresponding liquidus temperature, and
G is the nominal liquid-side temperature gradient at the interface. The dimensionless
equations governing the fluid motion are the Oberbeck-Bousslnesq equations in a reference

frame translating with the nominally steady velocity (I,V;) of the moving interface

Veu=0, (3.92)
1 (‘3—“+u -Vu+2Q°qu+Q‘x(Q‘xr)) =-Vp-p (Ts.C ) I; + vZu , (3.9b)
S\ ot PLoY" Sc
aT
AN =2
m(m+uvn)vrb (3.9¢)
%%kw- VC_ =V2C,, (3.9d)



R

it A

28

where the dimensionless variables u, p, T, and C_ are, respectively, velocity, pressure,
temperature, and solute mole fraction in the liquid, Sc = v/D is the Schmidt number,
Le = D /x_ is the Lewis number, ¥ = vy/(gD)" is the dimensionless solidification rate,
is the magnitude of the gravitational acceleration, and Q*=QH/V =0 (D/g?)"31? is the
dimensionless angular velocity. We note that in (3.9a-d), the velocity is referred to the
moving frame, unlike the mixed formulations employed by Coriell et al. (1980) and
subseqgent authors in which the velocity in the laboratory frame appears in equations written
in the moving frame.

The energy equation in the solid is

aTg 3T 2
e(at ) * V2T, (3.10)

where Tg is the dimensionless temperature in the solid, x*= xg/x, Is the thermal diffusivity
ratio, and xg is the thermal diffusivity of the solid.

Dimensionless boundary conditions at the interface are derived from conservation of
mass
—gVgen-p*le N=uen, (3.11a)

and the no-slip assumption
(u+l) t=0, (3.11b)

where n and t are unit vectors normal and tangential to the Iinterface, respectively, Vg is the
local interface velocity scaled by Vy, p* = ps/PLo is the density ratio, pg is the (constant) solid

density, and e=p*-1is the fractional shrinkage. The dimensionless energy balance at the

interface Is .

L" (Vg+1p) e n=-k VT e n+AVTge D, (3.11c)

a0 Wil @ Wi W u
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where the right-hand side corresponds to the difference between the normal components of

the heat flux vectors in the liquid and solid, and the left-hand side corresponds to the product

of the latent heat (L* = L(C.)/Ly, where L(C_) is the latent heat per unit volume and
Lo=L(0)) and the normal component of the solidification velocity. Here
I'=Giko/[Lo(gDL)""®] Is the dimensionless liquid-side temperature gradient at the
interface, A = kg(C.)/k o is the thermal conductivity ratio, kf =k (CL)/K g, ko Is the
thermal conductivity of pure HgTe liquid af its melting temperature, and k (C..) and ks(C..)
are the thermal conductivities of the liquid and solid, respectively. The dimensionless solute

balance at the interface is
p‘(CL—Cs) (VS+|Z)' n=—VCL- n, (3.11d)

where Cg is the solute mole fraction in the solid. We also require the temperature to be

continuous
TL=TS' (3.118)

across the interface, the liquid and solid solute mole ffactions_ at the interface to be related

according to the binary phase diagram

Cs=kC_, (3.111)

where k is the segregation coefficient, and the temperature and solute mole fraction on the

liquid side of the interface to be related by

Ly omrfo -y, 1L
.YTL‘mL(CL k) ‘*‘Y(R1+R2). (3.11¢g)

where m{ = m_C_kio/(DiLo), ¥" = Tyk o¥g'"®/(D*3Lo), Ty Is the melting temperature of
HgTe, m is the slope of the liquidus, R, and R, are the principal radii of curvature of the

interface, and ¥ is the capillary coefficient. The temperature- and corhposition-dependence
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of most of the thermophysical properties (other than p;) is given for Hg,_,Cd,Te in Appendix
C. For the remaining properties, values measured at selected temperatures and compositions

are taken as constant over the entire range.

3.3. Basic State and Linear Disturbance Equations

In the reference frame described in §3.2.2, the steady one-dimensional basic state

specified by

Vs=0, ' (3.12a)
with

u=-p°ly, (3.12b)

- _1

T.= Le [1 —exp(-p‘Lez)]. (3.12¢)

Ci=1+Zexp(- " 2), (3.12d)
in the liquid, and

= x*(k(+ L'y/T) Le

Tg = T [1- exp(-L22)] | (3.12e)

in the solid is, with one exception, the same as that used by Coriell et al. (1980). Here \—Is,
u, TL. CL. and Ts are, respectively, the dimensionless basic state interface velocity, velocity,
temperature, and solute drstrrbutlons in the liquid, and temperature distribution in the solid,
and = = (1-k)/k. Our basic state differs from that of Coriell et aI ln that Vs =0andu Is not
proportional to the shrinkage ¢, because in our formulatron the Interface and ﬂurd velocmes
are referred to the same (moving) inertial reference frame. Note that for p* =1 and
Le-VO(10'3), (3.12¢) can be? epprerrimated by a linear function of z (e.g., (3.3a)) from the
interface out to fairly large values of z. | o 7 |

To determine the oondmons under whlch a drsturbance grows. we write the interface

velocrty. liqurd velocrty, emperature solute mole fractron and pressure as




i

giii

i

ik

Gl

ol

L

it

LA

cii qun

il

it

il

f

iy

Rl

1

i

31

Vs(x,y,1) =0+ Vg(x,y,1) , (3.13a)
u(x,y,2,1) =0+ u'(x,y,2,7) , (3.13b)
TLxy.2.7) =Ty2) + To(xy.2.7) (3.13c)
CL(x.y.2,7) =C_(2) + C (x.¥,2,7) , (3.13d)

P(x.¥,2,7) =p(z) + P'(x.y.2,1) , | (3.13e)
and the solid temperature as
Ts(xy.z,1) =Tgz)+ Te(x.y,z.1) (3.131)

where V;, u’, TL'. CIZ, and p’ are, respectively, disturbances to the dimensionless interface
velocity, liquid velocity, temperafure. solute distribution, and pressure‘, Ts'is the
dimensionless temperature disturbance in the solid, and p Is the dimensionless basic state
pressure distribution. Substituting (3.13a-f) into the governing equations and boundary
conditions, subtracting the basic state equations, and retaining only linear terms, we obtain
dimensionless disturbance equations and boundary conditions. The equations governing small

disturbances in the liquid are

Ve u'=0, (3.14a)

1 au aU’ | * ’ . 2 .7
— (9l o =-Vp - Tl - I, + V<u 3.14b
Sc( et qu) p 4ScL 73 %G i, + ( )
Le[%-l}-p‘%‘ww'exp(—p‘Lez)]:VZTL, (3.14¢)
ﬁ-p‘a—CL—Ep' w’ exp(- p‘z)=V20;_, (3.14d)

ot oz

where W' is the dimensionless z-oomponem of the dxsturbance veloclty Here, we define

FT = fTLO L/(pLOkLO) Fc =C fc/pl_o, fT = apL(TL CL)/aT fc = apL(TL CL)IBC Q = QO 'Z'
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and Q = 0, (D/g?) /312 is the dimensionless rotation rate. We note that although the left-
hand sides of the disturbance equations are similar to the corresponding left-hand sides of the
disturbance equations of Coriell et al. and others, the second term in each of (3.14b-d) arises
from a convective term of the type u « V( ), whereas in previous work these terms arose
from the mixed nature of the formulation.

The disturbance energy equation in the solid is
3Ts _ A5\ _ o v2r! 3.15
Le( - az)“"VTS' (3.15)
Taking the curl of (3.14b) and the dot product of the result with I, we obtain an equation

1 {30 _ #30 _oq WY _v2y
Sc( o _ g 92 29082) V20 (3.162)

for the z-component of the vorticity, (oL: Taking the curl of (3.14b) twice and the dot

product of the result with I;, we obtain an equation

1 d o2,/ d ’ T IFI o’ Fg Y S
1 (9 g2 - L v+ 20,22 ) = Vil v2C, + Viw'. 3.16b
Sc(at F> ¥ °az) ¥'Sc 1L+138c Tt | (3.16D)

for the z-component of the velocity, where V2 = 2%/0x® + 32/ay? is the horizontal portion of

the Laplacian operator.

The disturbance boundary conditions linearized about the nominal interface position

(z=0) are
u(x,y,0,1) = €2 Xy, (3.17a)
v(x.y,0,7) = €2 ;y 1), (3.17b)
w(x,y.0,7) = -2 L), (3.17¢)
3_‘1’-'!%:9-'5—1 -— e V2n(xy.1), | (3.17d)
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Y e anlxy.t) _ _ k':aT (x,y,0,1) .

r ot 0z
aT'(x.y.O,'c) e, ki L*
aTg(x.y.0,1) ok _ Ly
A E + Le(kLp o n(x,y,t), (3.1»79)
kp* n(X,y.t) + k CL(x.,y.0,7) + 3—‘1%111:11=-E‘p, ﬁ-‘%zﬂ. (3.171)
TL(x,y,0,7) + n(x,y.7) = Te(x,y,0,7) + }T(k[ + L") n(xy.), (3.17g)

YL[TL(x,y,O.t) saixyn] = me [Clx.y.0,1) - p*z nixyn)] + ¥y VBn(x,y.1), (3.17h)

where V's(x.y,t) = [, an/ot is the linearization of the disturbance interface velocity, and 7 is
the local dimensionless interface deflection.

We write the horizontal and temporal d'ependence of the dimensionless disturbance
quantities as exp(ot + la,x + iayy), where a, and ay are the x- and y-components of the
horizontal wavevector, and ¢ is the temporal eigenvalue. Substitution into (3.14c,d),

(3.15), and (3.16) yields

sic' [ (0% - @)W - p*D(D? - a®W + 2025 Do] =

—TrFT—a"’eL-—FlazxL+ (Dz—az)zw. (3.18a)
Y'Sc 7380

1 . . — (D2 _ 22
Sc(co) p* Do +2Q, DW) (D% - a0, (3.18b)
Le (8 _-p* DO)= (Dz—az)eL—LeWexp(—p‘l_ez) . (3.18¢)
o X - p* DX = (D®-a?)x, +Zp* W exp(- p°2) ' (3.18d)

in the liquid, and

Le (o 85 - D8g) = x* (D?- a%)eg | (3.19)
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in the solid: the boundary conditions (3.17a-h) at the interface become

W) =-¢cB, (3.20a)

DW(0) = € a°B, , (3.20b)

©(0) =0, ] | (3.20¢)

1 1" 6P = - ki DBLO)+ A DOs(0) + Le (k[p‘—g'——t;g B, (3.20d)
(o+Kkp")B = - kX0) - :‘p DX, (0), (3.20e)
qm+5=%mH%(Q+U3& (3.20f)
Lo@ +p] =mi [10-p2 B] - ¥ve®s, (3.20g)

where W, @, X, and @ are, respectively, the amplitudes of the disturbances to the vertical
velocity, vertical vorticity, solute distribution, and temperature in the liquid, @g is the
amplitude of the disturbance temperature in the solid, 'and B (a constant) is the amplitude of
the disturbed interface position. For the boundary conditions far from the interface, we have

followed Coriell et al. (1980) and set all disturbances to zero
W=DW=0=X=6_=0 as z — oo, (3.21a-¢e)
65 = as z - - oo, - (8.211)

3.4. Numerical Solution
Our objective is to find conditions for which infinitesimally small disturbances decay
(Re(o) < 0) for all but a finite number of critical wavenumbers (typically one), and are
neutral (Re(s) = 0) for the critical wavenumber(s). These conditions separate basic states

that are linearly stable from those that are not.
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'In the previous section, we formulated an eigenvalue problem for systems of ordinary
differential equations on two semi-infinite intervals (in the liquid and solid), coupled by
boundary conditions at the deformable interface. For convenience, we follow Coriell et al.
(1880) and solve the problem on a finite computational domain [-h,h]. With regard to the

far-field boundary conditions at z = + =, we set all disturbances to zero at z= h

W=DW=0=%=6=0 atz=h, (3.22a-e)

in the liquid and at z = -h
85 =0 atz=-h. . (3.22)

in the solid, where we have taken h to be at least 10, depending on the vertical structure of
the basic state temperature and solute fields given by (3.12c,d). (For steady onset, we have
checked a number of our results using more accurate asymptotic boundary conditions applied
at z = t h derived following Keller's (1976) procedure, and have found excellent agreement
between eigenvalues computed using the two sets of boundary conditions.) Since we use
Chebyshev polynomials in our numerical solution, we scale the vertical coordinate in the
liquid and solid regions by Z;=(2z-h)h and z, = (22 + h)/h, respectively, so that each
region lies between -1 and +1. The resulting system is solved using a spectral Galerkin
technique developed by Zebib (1987).

We approximate the highest derivatives of the amplitude of the disturbance velocity,
solute distribution, and temperature in the liquid, and temperature in the solid, by truncated

sums of Chebyshev polynomials of the form

- J

W4z = YTz, (3.23a)
J

0®zy) = YMTizo), (3.23b)
j=0
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12(zp) = Y PTiz2), (3.23c)
=0
J

8{2@y = Y.QTj@). (3.23d)
=0
J

ez, = Y.ZT(zy), (3.23e)
j=0

where T is the |-th Chebyshev polynomial and the coefficients Kj, M;, P, Q;, and Z; are to be
found. Representations of lower order derivatives can be found by integrating (3.23a-e) and
using standard properties of Chebyshev polynomials. The procedure described by Zebib

(1987) reducés the problem to a matrix eigenvalue problem

As+cBs=0, (3.24)

where o is the temporal eigenvalue, and the elements of the square matrices A and B depend on
the square of the horizontal wavenumber aZ= af( + as. the bulk fnole fréction C... and the other
dimensionless parameters. A more detailed description is given in Appendix A.

In what follows, we characterize the stability of the nominally plane-front solution in
terms of the bulk mole fraction C,, and dimensionless solidification rate v, with all other
parameters taken as fixed. As shown In §3.5, there Is a critical value vy, such that for y> ve
there Is no range of stable C,, (i.e., for any C. a disturbance at some wavenumber will grow),
while for y < 7., disturbances of every wavenumber decay for some range of the bulk mole
fraction. (See figure 3.1 for a schematic representation.) The upper and lower limits of this
range are denoted by C:, and C_}, respectively, and depend on 7. These critical values of C,,
correspond to the extrema on the morphological and convective neutral curves (C, versus a)
separating those oorﬁbinations of C.. and a for which all temporal eigenvalues o lie in the left
half-plane (LHP) from those for which at least one eigenvalue lies in the right half-plane, in

turn corresponding to stable and unstable basic states, respectively.
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In order to determine the bulk mole fractions on the morphological and convective
neutral curves separating stable and unstable basic states for an arbitrarily chosen
wavenumber a, we first compute all eigenvalues o of (3.24) at each of N values of C_ (C(", 1
< n < N) in the range [CTlrl » 0.2], where the lower bound is typically 10~* and the upper
bound is determined by the largest bulk mole fraction of CdTe for which we have data for the
equation of state. We then attempt‘to determine a range of C_ for which all temporal
eigenvalues are in the LHP. If one of the original values of C_ selected Is stable (i.e., all
temporal eigenvalues lie in the LHP), we then determine two intervals such that as C.
increases, In one a transition from instability to stability occurs, and in the other a
transition from stability to instability occurs. Through these two intervals pass the
convective and morphological neutral curves, respectively, as discussed in §5. If none of the
original N values of C_ is stable, we choose the value (say, CQ’) for which the most unstable
temporal eigenvalue has the smallest real part, and subdivide the interval [CU-1), cli*1)] yntil
we either find a stable value of C_ (at which juncture we proceed to isolate the two intervals
described above), or abandon the search when the real part of the least stable temporal
eigenvalue and the difference between consecutive values of C_ supports the expectation that
all intermediate values of C_ are unstable. Having found the intervals of C.. in which the
transitions occur, we then compute the bulk mole fractions on the convective and
morphological neutral curves using a bisection method.

To compute the critical bulk mole fraction C, (i.e., the minimum on the morphological
neutral curve), we arbitrarily choose a wavenumber and compute the corresponding C_ on
the morphological neutral curve using the procedure described above. We then fix C.. at the
value computed in the previous step, and compute the eigenvalues o for a discrete set of
wavenumbers in a chosen range. We next select the wavenumber from among this set at
which the o with largest real part was obtained. If this wavenumber is at an endpoint of the
chosen range, we extend the range until the wavenumber corresponding io the largest Re(o) is

inside the range. We then select this wavenumber and determine the corresponding C_ on the
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neutral curve. We continue this process until the relative change in C_ is less than 1075, We
compute C. following the same procedure. Spectral and domain convergence results are

shown in Tables 1 and 2.

3.5. Results

- 8.5.1. Nonrotating case -

We begin by considering the basic state profiles of temperature, solute distribution, and
density in the liquid. Equation (3.12c) shows that (for p* = 1) the dimensionless basic state
temperature distribution decays exponentially away from the interface on a Ieng_thscale 1/Le,
where 4 x 10~ < Le < 1072 for Hg,_,Cd,Te, and so is essentially linear on the scale of the basic
state concentration profile (3.12d). As discussed in §3.1, the liquid density of Hg,.,Cd,Te
does not depend monotonically on temperature for sufficiently small C. Hence, qualitatively
different vertical density stratifications are obtained for fixed values of y and I', depending on
C.. The nature of the density stratification and the thermal and solutal contributions thereto
have profound consequences for the onset of convection. _

For y=1.32 x 10~ and T = 8.2x 107* (corresponding to the dimensional solidification
rate and temperature gradient V, = 0.5 w/sec and G = 25 K/cm, respectively), figure 3.2(a)
shows basic state density profiles for different values of C_. For C_ = 0.1, the density varies
monotonically with elevation in the liquid. For C_ = 0.045, the density variation is still
monotonic, but there is a considerable reduction in the magnitude of the density gradient near
the interface. For smaller values of C. (0.025 and 0.01), the density assumes a local
maximum in the liquid. Figure 3.2(b) shows the vertical density stratifications for different

values of C_ fory = 2.64 x 104 and ' = 8.2 x 107*. The basic state density profiles are

generally similar to those for y = 1.32x 104 and I = 8.2 x 107#, being monotonic for larger.

values of C_, and nonmonotonic for smaller values. We note, however, that for C_ = 0.025,
the basic state density stratification has both a local minimum and a local maximum. (In

figure 3.2, the approximate coincidence of the p /p o curves is only apparent, as can be seen
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from figure 3.3, in which for y = 2.64 x 107* and I = 8.2 x 10~*, the derivative of PLUPLo
with respect to C_, vanishes at a slightly different z near 1.7 for each value of C_ shown.)

The solutions of (3.18)-(3.22) depend on sixteen dimensionless parameters, as defined
in §§3.2 and 3.3. To determine the stability of a basic state with a nominally planar
interface, numerical values of these parameters need to be specified. (The approximate
solutions on the finite interval also depend on h.) It is therefore not feasible to numerically
explore the effects of more than a few combinations of these parameters on the onset of
instability. In this work, we present neutral curves (C_ versus a) for fixed values of y and
I, amplitudes of the disturbances as a function of the vertical coordinate for selected values of
C..v. and I, and stability boundaries (critical values of the bulk mole fracﬁon C.asa
function of y) for selected values of I'. The thermophysical properties are taken as constants,
with most being evaluated at C_, using the functional forms shown in Appendices B and C at the
melting temperature for liquid properties, and at the freezing temperature for solid
properties. We have used g = 9.80 m/sec?.

Figure 3.4(a-c) shows neutral curves for ' = 1.64 x 108 (GL = 50 K/cm) and three
values of y. The solid neutral curve at the top of each figure corresponds to morphological
instability. The minimum on that curve (denoted by C_) determines one point on the stability
boundary. The dashed neutral curve in each figure corresponds to an oscillatory buoyancy-
driven convective instability mode. Just above that curve, all disturbance decay, whereas
just below, oscillatory disturbances grow. The maximum on that curve determines another
point (C') on the stability boundary. In the unstable region below the oscillatory convective
neutral curve, solid neutral curves correspond to steady convective modes. Since we have
found no liquid density data for C_ > 0.2, computations were not performed for bulk mole

fractions in excess of 0.2 (above the dashed-dot line in each of figures 3.4(a-c).

Figure 3.4(a) shows the neutral curves for y = 2.64 x 107%. The buoyancy-driven

_ Instability modes occur in @ wavenumber range of approximately 0.01 to 10. The extrema of

the morphological and oscillatory convective neutral curves occur at C. = 0.0989 and

Q-2
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C* = 0.0369, respectively. For C.' < C_ < C., infinitesimal disturbances decay for all
wavenumbers. Note that the critical bulk mole fraction C. (below which there is no
morphological instability) occurs at a larger wavenumber than CZ° (above which there Is no
convective instability). When v is increased to 5.28 x 1074 (V= 2 p/sec), C., decreases to
0.0464 and C** increases to 0.042, so that the range of C,, in which disturbances decay for all
wavenumbers is smaller, as shown in figure 3.4(b). The wavenumber range in which
buoyancy-driven convection occurs Is shifted slightly to the left. For y = 7.92 x 1074
(V; = 3 wsec), the extremum on the morphological curve lies below the extremum on the
convective curve, as shown in figure 3.4(c), and there is no range of C_ for which
disturbances decay for all wavenumbers. ForT = 1.64 x 1073, we find a critical value of the
dimensionless solidification rate y, = 5.61x 10 (V; = 2.12 p/sec) above which plane-
front solidification is unstable for all values of C_.

The basic state density, its gradient and the thermal and solutal contributions thereto,
and the amplitudes of disturbances to temperature, solute distribution, and vertical velocity,
are shown as functions of z in figure 3.5(a-d) for vy = 2.64 x 1074, r=1.64 x 10'3. and four
values of C_ at a = 2.85. Figures 3.5a(i), 3.5b(i), 3.5¢c(i). and 3.5d(i) show the basic state
density profiles for increasing values of C... We note that below C_, = 0.035, the density
depends nonmonotonically on 2. We point out that for the linear equation of state (3.1), the
stabilizing or destabilizing character of the thermal and solutal stratifications can be
determined by inspection of the basic state temperature and concentration profiles. For more
complicated equations of state, it is necessary to individually examine the two terms on the
right-hand side of (3.2). Thus, in figures 3.5a(ii), 3.5b(ii), 3.5c(ii), and 3.5d(ii), the
solid, dashed, and dotted curves are the dimensionless basic state density gradient, and
contributions to it from the solute and temperature gradients, respectively. Note that the
solute gradient is stabilizing [(3p /3C)(aC/3z) < 0] throughout the liquid layer for all
values of the bulk mole fraction C_. However, the temperature gradient is destabilizing

[(dp /T)(aT /oz) > 0]_ in a sublayer adjacent to the liquid-solid interface, and stabilizing
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[(dp /0T)(8T /02z) < O] above this sublayer, as shown In figures 3.5a(ii), 3.5b(ii),
3.5¢(ii), and 3.5d(ii). As C,_ increases, the height of this sublayer decreases, the magnitude
of the destabilizing thermal contribution (3p /0T)(9T /0z) to the density gradient decreases,
and the magnitude of the stabilizing solute contribution (3p,/0C)(9C/dz) Increases.

Figures 3.5a(iii-v), 3.5b(iii-v), 3.5c(iii-v), and 3.5d(iii-v) show the z-dependence
of the real and imaginary parts (denoted by solid and dotted curves respectively) of the
disturbances to the temperature, solute distribution, and vertical velocity associated with the
most unstable oscillatory convective instability mode for different values of C_. For
C. = 0.01 (a value that for a = 2.85 lies well below the oscillatory neutral curve in figure
3.4a), figure 3.5a(i) shows that the basic state density profile density assumes a maximum
near z = 2.7, and that between the liquid-solid interface and this maximum, the liquid layer
is hydrostatically unstable. Also, in this lower part of the liquid the temperature and solute
gradients are destabilizing and stabilizing, respectively. As Is clearly seen in figure
3.5a(iii-v), the disturbances are confined largely within the sublayer where the
temperature gradient is destabilizing, although they penetrate weakly into the liquid above
the density maximum, in which both the temperature and solute gradients are stabilizing.

For C, = 0.035 and 0.0369 figures 3.5b(i) and 3.5c(i) show that although there is no
region in which the overall density gradient is hydrostatically unstable, there is a sublayer
adjacent to the interface in which the temperature gradient is destabilizing. The disturbances
associated with the oscillatory mode of convection are confined to this sublayer, as shown in
figures 3.5b(iii-v) and 3.5c(iii-v). In this sublayer the temperature gradient is
destabilizing and the solute gradient is stabilizing. As discussed in §3.6, these conditions in
the sublayer thus correspond to the diffusive regime of doubly-diffusive convection, with
oscillatory onset of buoyancy-driven convection. The vertical structure of the disturbances
is very similar to that shown in figure 3.5a(iii-v). In both cases, the disturbances are
confined largely within a sublayer in which the thermal stratification Is destabilizing, and

penetrate weakly into the liquid aBove the sublayer. The disturbances for C_ = 0.01,
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however, show more structure in the sublayer than those for C._ = 0.035 or 0.0369. This is
because the effect of the destabilizing temperature gradient is stronger than for C,, = 0.035
and 0.0369, as discussed above. For C, = 0.07, however, the structure of the eigenfunctions
is completely different, as shown in figure 3.5d(iii-v). In this case, the eigenfunctions are
associated with the least stable morphologic;al instability mode. Although there still exists a
small sublayer in which the temperature gradient is destabilizing, the disturbances are not
confined to that region. The disturbances decay strongly with increasing z.

We present our principal results in terms of stability boundarieé in the ¥-C_ plane 'for
four values of T in figure 3.6(a-d). The stability boundary consists of some portion of the
morphological branch joined to a convective branch. The dashed and solid curves in each
figure correspond to minima on the morphological neutral curve (C.) and maxima on the
neutral curve associated with buoyancy-driven convection (C.°), respectively. Figure
3.6(a) shows the stability boundary for I’ = 8.2 x 1074. Above the morphological branch,
disturbances grow in some wavenumber range and the plane-front solution Is unstable.
Similarly, disturbances grow below the convective branch for some range of a. On the other
hand, below the morphological branbh and above the convective branch, disturbances of all
wavenumbers decay and plane-front solidification is stable. Beyond the critical solidification
rate y, = 2.70 x 107 (v, = 1.02 u/sec) at which the convective and morphological branches
intersect, there is no stable range of bulk mole fraction C.,. For I'=1.64 x1073, figure
3.6(b) shows the stable region in the y-C_ plane analogous to that for T =8.2 x 1074, The
morphological branch has shifted to the right and the convective branch has shifted slightly
downward. Their intersection occurs at a higher y (y. = 5.61 X 1074, V; = 2.12 p/sec), and
the stable region is larger. Increasing I still more leads to further enlargement of the stable
region and larger values of y,, as shown in figures 3.6(c) and 3.6(d) for I = 3.28 x 1072 and

6.56 x 1073 (G_ = 100 and 200 K/cm), respectively.
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3.5.2. Rotating case

ForT = 1.64 x 1072 (G_ = 50 K/cm), figure 3.7 shows stability boundaries for Qg = 0,
25, 50, and 100 rpm. Above the morphological branch, disturbances grow for some range of
wavenumber ar and plane-front solidification is unstable. Similarly, below the convective
branch appropriate to each rotation rate shown, disturbances grow for some range of a.
However, between the morphological branch and the convective branch associated with each
rotation rate (i.e., for CZ' < C_ <C), disturbances decay for all wavenumbers and plane-
front solidificatioh is stable. Note that the morphological branch is unaffected by rotation,
whereas as Q increases, the convective branch is shifted downward. The crltic-al CdTe bulk
mole fraction C.* on the convective branch is a decreasing function of Q, at any dimensionless
solidification rate, clearly indicating the inhibitpry effect of rotation on the onset of
buoyancy-driven con\;eétion. Beyond the critical solidification rate (denoted by v.) at which
the convective and morphological branches intersect, there is no stable range of CdTe bulk
mole fraction C_. Thus, plane-front solidification is unstable at all CdTe bulk mole fractions
for sufficiently high solidification rates. The critical solidification rate Y. at which the
morphological and convective branches intersect occurs at higher y with increasing rotation
rate. The critical value of vy, is increased by more than a factor of ten at Qo = 100 rpm
relative to the nonrotatihg case. We also note that the convective branch has a relatively
shallow local minimum near y = 2.64 x 1074, the location of which is only weakly dependent
on Qo. Thus, for a given rotation rate, operation at the solidification rate corresponding to
this local minimum allows plane-front solidification to be stably conducted at the lowest
value of C;.

Forr=8.2x 107* (G = 25 K/em) and Q¢ = 0 and 100 rpm, figure 3.8 shows stability
boundaries in the y-C_, plane analogous to those for I = 1.64 x 10~>. As expected on the basis
of the results of Coriell et al. (1980) for Pb-Sn without rotation, the morphological branch

is shifted to the left, reducing the range of solidification rates and bulk mole fractions for
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which plane-front solidification is stable. On the other hand, the convective branch is shifted
downwards relative to the I' = 1.64 x 1 0‘3 case, corresponding to an increase in the range of
stable operating conditions. We note that decreasing the temperature gradient has very little
effecfon ithe onset of convection in a nonrotating layer, but reduces the range of stable CdTe
bulk mole fractions by more than twofold for a layer rotating at 100 rpm. The critical
solidification rate y. is more than a factor of five higher at Qo = 100 rpm than in the
nonrotating case, although the stabilization is less than the factor of ten predncted at
=1.64x 103, Although the reduction In T’ has very httle effect on the cntucal value of y at
which the morphological and convective stability boundaries intersect in the nonrotating case,
for Q, = 100 rpm the critical value of y decreases by a tactor of three when the temperature
gradient is reduced. | ' |
As discussed for the Pb-Sn case (Chapter 2), at each value of Qo the onset of
morphological instability occurs via a short wavelength (large wavenumber) instability,
while convéctive instability sets in via disturbances with relatively longer wavelengths. In
the following section this point is discussed in the context of the mechanism by which rotation

inhibits the onset of convection.

3.6. Discussion

The qualitative differences between the neutral curves and stability boundaries presented
in §3.5 and those characteristic of the normal case in which density varies linearly with
temperature and solute mole fraction (e.g., the Pb-Sn results of Chapter 2; cf. Coriell et al.
1980, Oztekin & Pearlstein 1992) lead us to consider how the equation of state affects or
alters the mechanism by which the onset of motion occurs during directional solidification of
a binary liquid cooled from below.

We begin by noting that the mechanism responsible for the morphological instability is
insensitive to the net density stratification in the liquid, and is insensitive to variations of

temperature and composition outside a relatively thin layer adjacent to the interface. This is
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evident from a comparison of the neutral curves and stability boundaries for the present case
to those for Pb-Sn. |

On the other hand, the'onset of bugyancy-driven convection depends strongly on the
nature of the stabilizing or destabilizing temperature and solute gradients in the liquid, as
well as on the diffusivities of the stratifying agencies (Stern 1960; Baines & Gill 1969). As
discussed in §3.1, the density of a binary liquid solidified by cooling from below can depend
nonmonotonically on the vertical coordinate even if the density depends monotonically on
temperature and composition. For example, if the equation of state is of the form (3.1) and
a>0,B>0, and k < 1 (as for Pb-Sn), then (3.5) provides a necessary criterion for the one-
dimensional basic state to have a density maximum (3.6) within the liquid. However, for any
system (e.g., Pb-Sn) characterized by the linear equation of state (3.1), even if the density
has a maximum in the liquid, the temperature and composition distributions (3.3a) and
(3.3b) will be stabilizing and destabilizing, reépectively. Following the standard “parcel
argument for a linearly stratified doubly-diffusive fluid (Turner 1973, page 251), we note
that if a fluid element is displaced downward, it will lose ils excess heat more rapidly than its
composition will adjust to the relatively solute-enriched surroundings, because the thermal
diffusivity is much larger than the solute diffusivity. Hence, the displaced parce! will be
dilute relative to the surroundings, and if B > 0 and the resulting buoyancy force is sufficient
to maintain the downward motion, the one-dimensional basic state will be unstable. In the
context of doubly-diffusive flows, this conﬁgl‘:'ration is in the “fingering” regime, and the
onset of convection is said to be "steady” or "monotonic”.

For binary liquids such as Hg,.,Cd,Te, for which the dependence of density on
temperature or solute mole fraction is not monotonic, solidification by cooling from below for
some combinations of the bulk mole fraction, liquid-side temperature gradient, and
solidification rate can lead to, as discussed in §3.1, a configuration in which there exists
adjacent to the interface a sublayer in which the positive temperature and solute gradients

are destabilizing and stabilizing, respectively. If a liquid parcel in this sublayer is displaced
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downward, it will lose its excess heat more rapidly than its excess CdTe mole fraction, again
because the thermal diffusivity is much larger than the solute diffusivity. lts CdTe mole
fraction will thus exceed that of the surroundings, and so the parcel will be less dense than
the surrounding liquid. The resulting buoyancy force will tend to move the fluid parcel
vertically upward. Hence, the initial displacement engenders a restoring force, which can
result in overshoot of the parcel'é initial (equilibrium) position. Such a configuration Is in
the "diffusive” regime, and the motion is said to be "overstable”, with the temporally growing
oscillatory parcel displacements leading to the oscillatory onset of convection.

The difference between the mechanisms by which the onset of motion occurs in
configurations in which the temperature gradient is everywhere stabilizing, and in those in
which temperature is destabilizing in a sublayer adjacent to the interface, is manifested in
qualitative differences between the neutral curves, and hence the stability boundaries, for the
Pb-Sn and Hg,.,Cd, Te systems.

The most notable feature of the neutral curves in the present case is that the onset of
buoyancy-driven convective instability is associated with an oscillatory mode, unlike the
normal (e.g., Pb-Sn) case. Moreover, for each wavenumber for which it exists, the
corresponding oscillatory neutral curve- bounds the range of stable C_ from below, rather
than from above as in the normal case. As the extremal values of C_ on the morphological and
-oscillatory. convective neutral curves approach, the range of bulk mole fractions for which
plane-front solidification s stable disappears. This contrasts to the normal case, in which
plane-front solidification is always stable for sufficiently dilute solutions (i.e., C,_ Iying
below the minima of the morphological and steady convective neutral curves).

These features of the neutral curves have profound consequences for the stability
boundaries in the y-C_ plane. For Hg,.Cd,Te, plane-front solidification can be unstable at all
solidification rates if the bulk mole fraction is chosen sufficiently low, as shown in §3.5.
This is because the effect of a destabilizing temperature gradient in the sublayer adjacent to

the interface becomes stronger as the bulk mole fraction decreases (due to a more prominent
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density maximum as the composition approaches pure HgTe), and the stabilizing effect of the
solute gradient diminishes (because It is proportional to C.). On the other hand, in Pb-Sn
directionally solidified by cooling from below, plane-front solidificétion is stable for any
solidification rate and liquid-side temperature gradient if the solute bulk mole fraction is
sufficiently low (Corlell et al. 1980; Oztekin & Pearlstein 1 992).

For Hg,.,Cd,Te, plane-front solidification can be unstable at all values of the bulk mole
fraction (less than C. = 0.2) it the.soli‘dification rate exceeds a critical rvalue Y. The
explanation for this result is made cleaf by reference to figuré 3.6(a-d). For values of C_
below the dashed curves, plane-front solidification Is unstable with respect to the onset of
overstable buoyancy-driven convection, because the stabilizing influence of rthe bottom-
heavy solute stratification Is insufficiently strong to overcome the destabilizing temperature
gradient in the sublayer adjacent to the interface. Above the solid curve, the configuration is
unstable with respect to the morphological instability. As y approaches 7. from below, the
stable region is "pinched" from below and above until at Y. It finally disappears. This
situation differs from that for Pb-Sn, for which plane-front solidification Is stable in a
region bounded above by the morphological and convective portions of the stability
boundaries.

In a single-component fluid with an unstably stratified layer overlying or underlying a
stably stratified regiop, convective motion is typically localized in the unstably stratified
layer, but may penetrate into the adjacent Siable region. In his early analysis of the onset of
thermal convection in a water layer with the temperature maintained at 0°C at the bottom and
in excess of 4°C at the top, Veronis (1963) showed that convection occurs in the unstably
stratified region and penetrates intd the sfably s;frétiﬁéd rég:ion as well. He determined the

extent of penetration for different ratios of the stably stratified layer thickness to the total

| layer thickness. He also found that convection in the stably stratified region is viscously

coupled to the more vigorous motion in the unstable layer. Walton (1982) and Zangrando &

Bertram (1985) have considered a doubly-diffusive fluid layer with a uniform vertical
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temperaturergr;r'adiant and a nonuniform vertical solute gradient. Both of these studies show
the disturbances to be localized about the neighborhood of the critical depth at which the
salinity gradient reaches its minimum value. In our work, when the liquid-solid interface Is
adjacent to a sublayer in which the temperature gradient is destabilizing, the disturbances
associated with the oscillatory onset of buoyancy-driven convection are largely confined to
that thermally unstably stratified sublayer.

As discussed above, the oscillatory onset of buoyancy-dnven convection and the
localization of the disturbances are associated with the occurrence of a sublayer in which the
temperature gradient is destabilizing. Hence, the results should be expected to apply
qualitatively to the solidification of other binary or multicomponent liquids in which
(ap,_/af)(aTL/az) changés rsig'nvwithiri the layer.

We recall from §3.5 (see figure 3.2b for C_ = 0.025) that for Hg,.,Cd,Te, basic state
density profiles more complicated than monotonic and unimodal can occur. For s‘everal'cases
(both unstable and neutrally stable) in which the basic state density profile exhibits both a
local maximum and a local minimum, examination of the eigenfunctions of the disturbances to
the temperature, solute, 7and7 vertical \)élocity shows that the disturbances are localized
within the sublayer in which the thermal stratification Is destabilizing. The eigenfunctions
are qualitatively similar to those for the case in which a single extremum (a maximum)
occurs, which is not surprising since in each case disturbance localization is a consequence of
confinement of the destabilizing temperafure gradient to a sublayer adjacent to the liquid-
soiia interface, and even when the basic state density profile has two local exirema, the
thermal contribution to the nght -hand side of (3.2) has only one sign change.

Our results demonstrate that nonmonotonlc vanation of density with temperature can
have dramatic qualitative effects qn the onset of instability in an unbounded horizontal fluid
layer undergoing plane-front solidification. The existence of a sublayer in which the thérmal
stranﬂcahon iéﬁ a;stabuhzlng should also have important consequences for the convection

which occurs in vertical Bridgman growth in ampoules ot finite radius, as well as in zone
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melting and other processes used fo grow Hgy.,Cd,Te crystals from the melt. To date,
however, these effects have not been observed in simulations of buoyancy-driven convection
in Hg, ,Cd,Te for these geometries, which have used equations of state that do not }properly
account for the nonmonotonic dependence of density on temperature. The axisymmetric
simulations of vertical Bridgman growth by Kim & Brown (1989) employ a linear equation
of state of the form (3.1), even though.the CdTe mole fraction in the liquid near the interface
is about 0.075 in each computation and the density is known to depénd nonmonotonically on
temperature for CdTe mole fractions up to at least 0.1. The computations of Apanovich &
Ljumkis (1991) for zone melting of Hg,.xCd,Te use an unusual equation of state in which the
density of Hg,,xCdee depends quadratically on temperature for x # 0.13, and is independent of
temperature for x = 0.13.

For Pb-Sn alloys, we have shown In Chapter 2 (cf. Oztekin and Pearlstein 1992) that
the onset of convection can be suppressed significantly at modest rotation rates. This is
undoubtedly due to the well-known Taylor-Proudman mechanism, described by
Chandrasekhar (1961). According to the Taylor-Proudman theorem, steady motion parallel
to the axis of rotation in a uniformly rotating inviscid fluid is prohibited at any nonzero
rotation rate. If this theorem were strictly applicable to a viscous fluid, the onset of steady
convection would be prohibited, since the flow in convection cells must have a vertical
component. Instead, in a viscous fluid, one sees an inhibition of the onset of steady convection,
with the degree of inhibition (expressed here as an increase in C..) increasing with Q.
Although, the Taylor-Proudman theorem applies only to steady flows, we find that the
rotation still suppress the oscillatory onset of buoyancy-driven convection during directional
solidification of Hg, ,Cd,Te, as presented in §3.6. It is not surprising that the morphological
instability is unaffected by rotation. The morphological instability occurs at very short
wavelengths, so the motion is almost perpendicular to the solidification front (i.e., aligned
with the axis of rotation). Hence, the Coriolis acceleration does not sensibly afféct the

morphological instability.
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Finally, Antar (1991) has presented a linear analysis of the onset of convection in a
horizontal fluid layer cooled from below, using an approximate equation of state for
Hgq.,Cd,Te. Although he purports 1o consider "convective Instabilities in the melt for
solidifying mercury cadmium telluride™ his analysis différs frbm ours in that no phenomena
associated with solidification (existence of a moving or deformable interface at which phase
change occurs, nonlinear basic state solute stratification due to rejection or preferential
incorporation at the interface, latent heat effects at the interface, etc.) are included.
Moreover, comparison to Antar's results is precluded because his linear vertical basic state
thermal siratification is inconsistent with his definition of the temperature difference across
the fiuid layer. Specifically, the basic state temperature distribution (Antar's equation (1))
requires the bottom temperature to be Té— AT, which is Inconsistent with his definitions of
T, (temperature where 9p/oT is zero, determined by Antar's equation of state) and AT
(temperature difference between top and bottom of the layer). This error vitiates his
analysis, which uses a thermal Rayleigh number defined in terms of a temperature difference
inconsistent with the basic state. That this inconsistency is not simply an apparent one due to

a typographical error is confirmed by reference to an earlier paper (Antar 1987) employing

the same basic state and disturbance equations, in which a different (and highly unusual)

definition of AT (related to the actual overall temperature difference by a constant dependent
on the temperature at the top or bottom wall; see figure 1 of Antar 1987) was used 1o achieve
consistency. That definition of AT was the only one consistent with the basic state, and hence
with the analysis and results. Unfortunately, Antar's 1991 paper defines AT as the overall

temperature difference, and so is wrong.
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CHAPTER 4

Stabllity of Dendritic Solidification of a Binary Liquid,
including Coriollis Effects

4.1. Introduction

Although plane-front solidification (in which the liquid and solid are separated by a
well-defined interface that remains planar and translates at a constant velocity) is desirable
in many applications, solidification of many binary alloys under conditions of practical
interest occurs dendritically. Dendritic solidification occurs in a so-called "mushy” zone
between the solid and melt in which dendrites, consisting of‘long vertical stems with
secondary and tertiary branches, are immersed in interdendritic fluid. This phenomenon is
illustrated in photographs by Huppert & Worsier (1985) and Chen & Chen (1991) of the
mushy zone in a dendritically solidifying aqueous ammonium chloride solution. In such a
case, the dendritic region might be modeled as a single domain, in which the macroscopic
structure (i.e., features that scale with the mushy-zone thickness) are considered to be more
important than the microscopic morphology (i.e., features dependent ori a detailed stochastic
description of dendrite location and shape). Thus, in many previous theoretical investigations
of its evolution and behavior, the mushy zone has been considered as a porous medium with
anisotropic permeability. A review of plane-frc;nt and dendritic solidification has been given
by Glicksman et al. (1986).

The gradients of temperature and solute which necessarily occur in a solidifying binary
or multicomponent liquid can destabilize the nominally motionless basic state, leading to the
onset of buoyancy-driven convection. Analysis of the convective motion in solidifying alloys
is complicated by the fact that temperature and composition in the mushy zone are related by
the phase diagram, and by the fact that phase change leads to motion and deformation of the

boundaries between the melt, mushy zone, and solid. We will refer to these boundaries as the
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liquid/mushy-zone and mushy-zone/solid interfaces. Characteristic of a moving boundary
problem, their locations are not known in advance, and must be computed as part of the
solution.

For binary liquids with k < 1 (e.g., Pb-Sn alloys) for which the equation of state is

adequately represented by the linear relation
p=po[1 - ar(T-To) —ac(C-Col] . (4.1)

cooling from below leads to dendritic solidification with a stabilizing temperature gradient
and a destabilizing composition gradient in both the mushy zone and liquid. . The vertical
composition gradient in the mushy zone is almost constant, while in the liquid there is a thin
compositional boundary layer adjacent to the liquid/mushy-zone interface. These
stratifications can lead to two different convective modes, as discussed by Worster (1992) in
his analysis of the stability of dendritically solidified binary alloys. One mode, referred to as
the boundary layer mode, associated with the thin compositional boundary layer in the liquid
adjacent to the liquid/mushy-zone interface, is largely confined within this layer, and has a
relatively small critical wavelength (on the order of its thickness). The boundary I.ayer mode

penetrates only weakly into the mushy zone, which is thus essentially stagnant. On the other

hand, the mushy layer mode is driven by the adverse compositional stratification in the

mushy zone and has a larger critical wavelength that scales with the mushy-zone thickness.
These two convective mode types are analogous to those found by Chen & Chen (1988) in
superposed porous and liquid layers heated from below. e . ’
~The onset of buoyancy-dnven convection in dendritically solidified binary liquids has
been investigated by Fowler (1985}, Nandapurkar et al. (1989), and Worster (1992) by
means of linear stability analysis. In all three studies, the mushy zone was modeled as a
porous medium, in which the kinetics of the phase change are sufficiently fast so that
nucleation and other nonequilibrium effects can be neglected. Thus, the temperature and

composition of the mushy zone were taken to be related by the liquidus of the phase diagram.
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Fowler (1985) considered solid volume fraction of sol‘i'd in the porous layer to be a
dynamical variable, but did not admit perturbations to the liquid/mushy-zone or mushy-
zone/solid boundaries. He used Darcy's law as an approximate description of the conservation
of momentum in the porous layer, and considered the case in which the solute diffusivity
vanishes, so that the thickness of the solutal boundary layer adjacent to the liquid/mushy-
zone interface is zero. Thus, the onset of convection must occur via the mushy layer n;tode.
Although Fowler's general formulation allowed for the solid volume fraction to be treated és a
dynamical variable, his analysis was restricted to a case in which that quantity was
asymptotically zero. Thus, no interaction was allowed between buoyancy-driven convection
and solidification.

Nandapurkar et al. (1989) used the momentum equation developed by Ganesan & Poirier
(1990) from systematic averaging of the Navier-Stokes equation over a “representative
volume™ large compared to the microscopic scale (primary dendrite arm spacing) and small
compared to the characteristic length scale (i.e., thickness) of the mushy zone. In their
analysis of the one-dimensional basic state, the volume fraction of liquid was computed from a
thermodynamically self-consistent formulation. However, the volume fraction of liquid was
not allowed to be disturbed in the stability analysis, which Is thermodynamically
inconsistent. Moreover, the stability analysis of these authors did not allow the mushy-
zone/liquid interface to move (relative to an inertial frame) or deform. These assumptions
significantly suppressed potential interactions between convection and solidification.

Like Fowler, Worster (1992) uses Darcy's law In the porous medium and takes the
porosity to be a dynamical variable, but admits disturbances to the location and shape of the
liquid/mushy-zone boundary, although not to the mushy-zone/solid interface. He concluded
that onset via the boundary layer mode Is relatively independent of the structure of the mushy
zone, while onset via the mushy layer mode is strongly dependent on the structure of the

porous medium, and in particular on the porosity profile in the mushy zone.
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We use a linear stability analysis to study the onset of buoyancy-driven convection in the
horizontally unbounded liquid and underlying mushy zone of a binary alloy undergoing
dendritic solidification. The mushy zone is modeled as a porous medium with anisotropic
permeability. The local porosity, as well as the locations of the boundaries between the solid
and mushy zone and between the mushy zone and liquid, are taken as dynamical variables, to
be determined as part of the solution. This work serves to identify the tﬁechanlsm by which
Coriolis effects affect the onset of buoyancy-driven convection in dendritically solidifying
binary alloys. The analysis is illustrated by results for the Pb-Sn sy~stem. |

This Chapter is organized as follows. We present the governing equations in §4.2 and an
appropriate nondimensionalization in §4.3. The one-dimensional basic state and linear
disturbance equations, both derived from the dimensionless equations, are given in §4.4. The
numerical solution technique is described in §4.5. Results for Pb-Sn binary alloys are

presented in §4.6 and discussed in §4.7.

4.2. Formulation

4.2.1. Governing Equations

A schematic of the solidifying system is shown in figure 4.1. A binary liquid of infinite
horizontal extent in which the bulk mass fraction of solute is C,, solidifies at a constant
nominal rate V;due to cooling from below, and is rotated at a constant angular velocity Q
about a vertical axis parallel to the gravity vector g = -gi,. A mushy zone of nominal height
H, (to be determined as part of the solution) lies between the melt and solid. For
convenience, we adopt the practice of previous investigators (e.g., Coriell et al. 1980; Fowler
1985; Worster 1992) and write the governing equations in a reference frame translating
with the nominally steady velocity (i,V,) of the moving interface and rotating at a constant
angular velocity Q about I, but refer the velocities to the laboratory frame.

The fluid density, py, Is taken as a constant (po, the liquid density at its melting point for

C_ = 0) except in the buoyancy terms in the liquid and mushy-zone momentum equations,
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where it is approximated by (4.1). The density of the solid is also taken as p,, so that the

effects of solidification shrinkage are neglected.

In the liquid, the motion is governed by the Oberbeck-Boussinesq equations

Veu =0, (4.2a)

-aa%L-—V,%';L+uL- VuL+29qu+Qx(ﬂxr):-%-%’—glz+vV2u|_, (4.2b)
0

in a reference frame translating with the nominally steady velocity (I,V,) of the moving
interface and rotating at a constant angular velocity Q about I,, where u,_ and p_ are the
velocity and pressure in the liquid, and v is the kinematic viscosity. The equations for

conservation of energy and species in the liquid are

éaItL'VIaT} +up. VT =% V2T, (4.2¢)
%L—VI%+ U » VCL DLV CL, (4'2d)

where T\, C,, x, and D are the temperature, solute concentration, thermal diffusivity, and
the solute diffusivity in the liquid, respectively. Since the reference state corresponds to the

pure solvent at its melting point, the equation of state in the liquid can be written as

Pt=Po [1 -aT(TL-TM) -ﬂccl.] ' (4.2¢)

where ar and ag are the thermal and solulal expansion coefficients, respectively, and T is
the melting temperature of pure solvent - _

The mushy zone is modelled as a po;:)u; r}‘edlum saturated by interdendritic fluid. Its
permeablhty is taken to be orthotropic wnh horizontal |sotropy For conservation of mass

and momentum, we adopt the model of Ganesan & Poirier (1990) developed by systematlc
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averaging of the Navier-Stokes equations over a "representative volume" large compared to
the microscopic scale (primary dendrite arm spacing) and small compared to the thickness of
the mushy zone. In a reference frame translating with the nominally steady velocity (I,V;) of
the moving interface and rotating at constant angular velocity Q about I, the equations for

conservation of mass and momentum in the mushy zone are

V-um=0. . (4.33)

9 (Um)_y 42 (Um . v[Ym =
¢at(¢) Vl¢az(¢)+um V(“> +20QxuUp,+6Q x(Qxr)

—oPm_ o9y _y4P(e)up+v ViU,  (4.3D)
Po Po

where u,, and p,, are the superficial velocity and pressure in the mushy zone, ¢ is the volume
fraction of liquid (henceforth referred to as the volume fraction), and P(¢) is an orthotropic
tensor with horizontal isotropy whose horizontal and vertical components are
P,L(0) = 1/Kn($) and P,(¢) = 1/K,(9), respectively, with Kp(¢) and K,(¢) the components
of the orthotropic permeability tensor in the mushy zone. The functional dependence of Ky, and
K, on ¢ is discussed in Appendix D.

The mushy zone Is considered to be a continuum, in which the porosity variation is
continuous. The thermophysical properties of the mushy zone (specific heat, thermal
conductivity, permeability, and solute diffusivity) are taken to be functions of the temporally
and spatially varying volume fraction ¢. The models we use for conservation of energy and
solute in the mushy zone have been employed by several investigators (Worster 1986;

Nandapurkar et al. 1989). Théée conservation equations are also formulated on a scale large

compared to the spacing between primary dendrite arms but small compared to the thickness

of the mushy zone. The temperature and interdendritic solute concentration are assumed 1o be
uniform in the representative volume. Transport of heat and solute in the mushy zone is by

diffusion and convection. Moreover, as interdendritic fluid solidifies, latent heat is released
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within the mushy zone and solute is rejected into the interdendritic fluid. Therefore, the
conservation equations for energy and species must include terms proportional to the rate of

change of volume fraction. They can be written as

aT o 3 2
Com 32 ~ViCom 52 +Cp U+ V=V e knVTn-Lo8: VL2 (4.30)
o Tm Vo Zm 4y . V= Ve DIC - (1-KCn 2+ Vi(1-)Cn &, (4.30)

where Ty, is the local temperature in the mushy zone, C,, is the solute concentration in the
interdendritic fluid, c, , and ¢, are the specific heats of the mushy zoné and liquid,
respectively, ky, and D,, are the thermal conductivity and solute diffusivity in the mushy
zone, k is the segregation coefficient, and L is the latent heat of fusion per unit volume. The
thermophysical properties of the mushy zone are taken as volume-fraction-weighted

averages of the fluid and solid phases within the mushy zone

Com =90CpL +(1- ¢)cp's , (4.3¢)
Km = ¢k + (1 - d)kg , (4.3f)
Dm = ¢Dy, (4.39)

where ¢, s and kg are the specific heat and thermal conductivity of the solid. In the mushy
zone, mass diffusion in the solid phase is orders of magnitude slower than in the
interdendritic fluid, and so is neglected. The solidification kinetics in the mushy zone are
taken to be sufficiently fast thatvnucleatjidﬁnr and §ther nohéquilibrlum effects can be neglected.
Hence, the temperature and composition within the mushy zone are related by the liquidus

relationship, a linear approximation to which is given by

Tm=TM+mLCm. . (4.3h)
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where m_ is the slope of the liquidus. Equations 4.3(c,d) are written as two evolution
equations fqr the algebraically related temperature and interdendritic solute concentration In
the mushy zone. Thus 4.3(c.d) should be interpreted as evolution equations for ¢ (time
derivatives of which appear on the right-hand sides), and either Tp, or C,- The equation of

state of the interdendritic fluid in the mushy zone is

Pt =Po [1 “’-T(Tm'TM)‘“CCm] . (4-31)'

In the solid the energy equation is taken as
e . oTs  <or -
-a—t§-VI —az§=KsV2Ts. (4.4)

where Tg and xg are the temperature and thermal diffusivity of the solid, respectively.

4.2.2. Boundary conditions

The boundary condition applied far from the liquid/mushy-zone interface as z 5 = is
C.—»C.. (4.5)

where C_ Is the bulk mass fraction of solute. At the liquid/mushy-zone interface,

n_.(x,y.1)-z=0, the volume fraction, velocity, normal stress, and shear stress are

‘continuous

é=1, . _ (4.6a)

U =up, | (4.6b)

g; (pm - pL) -vn. {[Vum+ (Vum)r] en- [VuL+ (VuL)T] .n} =0, (4.6c)
t. {[Vum+ (Vum)T] en- [Vul_+ (VuL)T] .n} =0, (4.6d)
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where n and t are normal and tangential unit vectors, respectively. We also require
temperature and composition to be continuous
To=Tm, (4.6e)

C.=Cpp. 7 (4.6f)

at the liquid/mushy-zone interface, and that the energy and solute balances across that
interface

VI, «n=VT,.n, (4.69)

VCLO n-VCm- n, (46h)
be satisfied.

On ng(x.y,t) - z = 0, the general frame-invariant mass balance
(p2- 1) %Itl= (Prus-p2uz) « (4.7a)
across the interface between two regions reduces to
Upeh =0, (4.7b)
because we have assumed that the solid and fluid densities are equal. The no-slip condition is
Upet=0. (4.7¢)

The composition and temperature at the mushy-zone/solid interface satisfy the
thermodynamic conditions

Cm = min (Cg, C_/k) , (4.7d)
Tm=Ts, (4.7¢)

where Cg is the solute concentration on the eutectic isotherm. Conservation of energy across

the mushy-zone/solid interface requires
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—LgVge N=ky VT e N—kg VTge N, | (4.71)
where Vg is the velocity of the mushy-zone/solid interface referred to the laboratory frame.

4.3. Nondimensionalization

4.3.1. Dimensionless Governing Equations
We scale the length, time, temperature in the liquid and solid, and the velocity, vorticity,
pressure, and solute mass fraction in the liquid with Hy, H/Vy, G HL, Vi, VHL, poVv/H, and
C.. respectively, where H_= D /V| is the characteristic length associated with the solute
gradient at the liquid/mushy-zone Interface. The length, time, temperature, velocity,
vorticity, pressure, and solute mass fraction In the mushy zone are scaled with Hp,, Hp/Vy,
G Hem» Vi ViHm, poViv/Hm, and C, respectively, where H,, is the mushy-zone thicknesé. The

dimensionless governing equations in the liquid are

VOUL =0, - (4-83)
1_[_%“' LG v, 4206 +0"x @ xD)] -
S a‘tL 0z L L L
~ Pt 2 5
-VD, - I+ Vou; , (4.8b)
PL 9073& z L
L = 27
Le(i;t'——azL‘l- uLoVTL)=V TL , (4.8C)
a‘tL 0z

where the dimensionless variables U, P 'f'L , and E:L are, respectively, velocity, pressure,
temperature, and solute mass fraction in the liquid, Sc = v/D_ and Le = D /x are the

13 |s the dimensionless

Schmidt and Lewis numbers, respectively, y=V/(gDy)
solidification rate, and Q*'=QH/V=0Q (D._/gz)”:’ly2 is the dimensionless angular

velocity.
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The dimensionless equations in the mushy zone are

Vi U =0, (4.9a)
Liﬁm__iﬁm_)~_m(§m_) i tfonx (0o ]
Sc[¢a¢m(¢) ¢azm(¢ +UpeV o +25Q xu,+teQ x(Q xr)

' 2
-¢Vmpm-p;—;’§ ¢1;-0PUy +V20, ,  (4.9b)

. a:f' . af - -~ . -
ELe [cpm T~ Com ﬁwm ~Vme]=Vm- Kt VT r(-ﬁ 3—29":) (4.9¢)

g[., L. gL, 5 .vmém]=vm. OVnCrm - E(1-K)C (%%-%‘l). (4.9d)
m m

*
Tm=1%+% Crm (4.9¢)

where Vo, = (3/9x,, 3/3yp, d/0zy,), the dimensionless variables T pm, m» and C are,
respectively, the velocity, pressure, temperature, and solute mass fraction in the mushy
zone, I' = G k. /[L(gD,)'®] is the dimensionless liquid-side temperature gradient at the
liquid/mushy-zone interface, & = yg"®H,/D_ 23 is the ratio of the mushy-zone thickness to
the characteristic length éssociated with the solute gradient in the liquid, k,,', =¢ + (1 -¢)k’
Is the thermal conductivity of the mushy zone scaled by the thermal conductivity of the liquid,
k* =k s’k is the ratio of the thermal conductivity in the solid to that in the fluid,
Com=0+(1- ¢)c, Is the specific heat in the mushy zone scaled by the specific heat of the
fluid, cp = cp s/Cp,L Is the ratio of the specific heat in the solid to that in the fluid, E Hmn P

m* = m_ C .k /[{LHy(gD)"3)], and Tv = TukU/[(LHn (gD () "3)).

The dimensionless energy equation in the solid is

Le %}-%}rvzfs , © (4.10)
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where 'fs is the dimensionless temperature in the solid, and x*= xg/x Is the thermal

diffusivity ratio.

4.3.2. Dimansionless Boundary Conditions
The dimensionless boundary condition applied far from the liquid/mushy-zbne interface

asz 5> = I8

& 1. - (4.11)

At the liquid/mushy-zone interface 1L (Xm:Ym:Tm) —Zm=0, the dimensionless boundary
conditions are

o=1, (4.12a)

U =Upy (4.12b)

(P —EPL) =N~ {[vmﬁm + (vmﬁm)T] en-§ [vﬁL + (vGL)T] . n} . (4.12c)

t. {[vmﬁm + (vmam)T] en-t [vaL + (vaL)T] . n} -0, (4.12d)

=t Tm (4.12e)
G- Com (4.121)
V'?L-n-vmfm.n, (4.129)
(&G = Vol e 0 - (4.12M)

The boundary conditions at the mushy-zone/solid interface g (Xm:Ym:Tm) —Zm=0 are
Gpon=0,  (4.13a)

Upet=0, (4.13b)
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Cn = min (Cg/C., 1/k) , (4.13c¢)
ET, =Ts . (4.13d)
—%¢Vs‘on=kf; memon-k‘st.n, (4.139)

where Vg is the velocity of the mushy-zone/solid interface scaled by V,.

4.4. Basic State and Linear Disturbance Equations

4.4.1. Basic State

The governing equations and boundary conditions (4.8)-(4.13) in the reference frame
translating upward with the nominal interface velocity V; and rotating at constant angular
velocity Q about the vertical axis admit a one-dimensional steady basic state solution. The
temperature and composition in each region, along with the porosity of the mushy zone,
depend only on the vertical coordinate z. The motionless basic state in the laboratory frame .
corresponds to a nonuniform superficial velocity distribution in the mushy zone in the
moving frame. The mushy-zone/solid and liquid/mushy-zone interfaces are horizontal,
stationary, and located at z = 0 and Hm, respectively, with the thickness H,, being determined
as part of the solution. The dimensionless equations governing the steady temperature,

composition, and volume fraction distributions in this motionless basic state are

%Tzl-ue%ho. (4.14a)
%h ‘%-:o, (4.14b)
in the liquid,
9 ()T +Le§cp,}.($)£m +218 _o (4.14c)
Az, dzm, @m T dzp



?dg:(igmm)+§$§mm+5“ - k)ijz‘%:O. (4.140)
Tm =Ilf:f—- + %‘Cm , (4.14¢e)

in the mushy zone, and
x dg%+l.e%=o, (4.14f)

in the solid. Here T, Gy, Tm Cm. &, and Tg are the dimensionless basic state distributions of
temperature and concentration in the liquid, temperature, concentration, and volume fraction
in the mushy zone, and temperature in the solid, respectively.

The dimensionless boundary conditions applicable to the basic state are

G-t (4.15a)
asz -,

o(1) =1, (4.15b)
TUE) =& Tm(1) (4.15¢)
CL(&) = Cm(1) (4.15d)
1-dfi§)=ﬁg‘z(r: ), (4.15e-1)
&dcf)=dcé“z(':). | (4.15g)

at the liquid/mushy-zone interface, and
ETm(0) = Ts(0), ' (4.15h)

©.,(0) = min(Cg/C., 1/K), (4.1510)
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(4.15j)

-50 = ) Tnl0) e Is0),
at the mushy-zone/solid interface. We note that (4.15a-J) constitute ten boundary
conditions for a ninth-order differential equation system. However, the mushy-zone
thickness Hp, is unknown, so that the problem is not overdetermined. Dimensionless basic
state temperature and concentration distributions in the liquid and the temperature
distribution in the solid can be determined by integrating (4.14a,b.f) subject to (4.15a),

(4.15¢), and a linear combination of (4.15f,g) to get

Ti(2) = §_M_ tm g, L {1 exp[- Lo(z - g)]}  (4.16a)
Cu(z) = (4.16b)
Ts(2) =Aq + Ay exp( L:z) (4.16¢)

where Ay and A, are integration constants. The remaining nonlinear ordinary differential
equations (4.14c,d) subject to the thermbdynamic constraint (4.14e) are integrated subject
to (4.15b,d,g,i) using a shooting technique to obtain T,,, Cr,, and $ along with the mushy-
zone height Hp,. The integration constants A, and A2 in (4.16c) can be found using (4.15h,j).
Our basic state composition and volume fraction distributions in the mushy zone are In

excellent agreement with those of Flemings (1974).

4.4.2. Disturbance Equations and Boundary Conditions
To determine the conditions under which disturbances grow or decay, we write the liquid

velocity, temperature, composition, and pressure as

UL (x.y,2,7) =0+ u(x,y.2,1) , (4.17a)
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?L(x.y,z.t) =TL(z) + T'L(x,y,z.-c) . (4.17b)
C_(x.y.2.t) =€ (2) + CUx.y.2,7) , (4.17¢)
BL(x.y,2.%) =PL(2) + PL(X.y.,2.7) (4.17d)

the velocity, temperature, composition, pressure, and volume fraction in the mushy zone as

U (Xm»YmeZmsTm) =0+ u,;,(xm.ym.rzm,tm) - (4.1 7e)

| Ty XY ZmeSm) = Tm Zm) + TnlXmeYmeZm Tm) + (4.171)
G (XY Zm Tm) =Crm (Zm) + ConlXm Yen:Zm:Tm) (4.17g)

B XmoYm+ZmTm) = Pm (Zm) + Pm(Xm:Ym:Zm:Tm) (4.1 ')'h)

0% YmeZmsTm) = #(Zm) + ¢ (Xm:Ym Zm:Tm) (4.171)

the solid temperature as
Ts(x.y,2,1) =Tg(2) + Tg(xy.2.7) (4.17))

the locations of the liquid/mushy-zone and mushy-zone/solid interfaces as

ALK YmoTm) = Hn+ 1 (Xm Y Tm) (4.17k)
As(XmoYm Tm) = 0+ Ns(Xm Y Tm) (4.171)

and the local velocity of the mushy-zone/solid interface as
Vg(x.y.1) =0+ Vg(x,y,1) . (4.17m)

where u;, T, CL. PL» andup, Tm.Cnm,Pm.are the dimenslonless velocity, temperature,
concentration, and pressure disturbances in the liquid and mushy zone, Té is the

dimensionless temperature disturbance in the solid, q>' is the disturbance volume fraction,

g 0 W = W W au 1
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n, and ng are the dimensionless disturbances to the liquid/mushy-zone and mushy-
zone/solid interface positions, and Vé(x,y,r) = (ans:/arm)lg is the dimensionless disturbance
to the mushy-zone/solid interface velocity. |
Substituting (4.17a-m) into (4.8)-(4.13), subtracting the basic state equations, and
retaining only linear terms, we obtain dimensionless linear disturbance equations and

boundary conditions. The equations governing small disturbances in the liquid are

Veu =0, (4.18a)

é[%i_%_”ziua‘ X u(]=- Vp;+%TL|, +;,5§; Cil,+ V2u[,  (4.18b)
Le(%Ttl'-_-%Tz'Hd—;Lw(): vl (4.18c)
LN N R (4.180)

where wL' is the disturbance to the z-component of the liquid velocity, Fr = arLDy/pok,,
Fo= acCulpo, Q" = Qg I, is the angular velocity, and Q) = Q4(D_/g%)"3//? is the
dimensionless rotation rate. Taking the curl of (4.18b) and the dot product of the result with

I,, we obtain an equation

0, dw, aw| ’
S5t ni ) vl 19

for the 2-component of the disturbance vorticity in the liquid, (o,_f After twice taking the curl

of (4.18b), the vertical component of the resulting equation Is

108 o2’ 3 v’ 5ned0\ TF o+ F f 4
= (2 VW - L v+ 20 220 )= 20T w217 4 TC v L vhw 4.20
Sc(a‘r L=3, YV WL+ 20 az) Psc ALt NYRAA (4.20)

y’Sc
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where V2 = 92/2x% + 9%/3y? s the horizontal portion of the Laplacian operator. The

equations goveming small disturbances in the mushy zone are

Ve Up =0, (4.21a)

L[léﬂ:'n.__a_ Upy, 2& ]=_v '
ST ) M B
g §2F ’ ®, — v 1 2 ’
—‘EI Tolz _{T&;%Cm'l"g (®) un +-$-vmum. (4.21b)

km(¢)VT+(1k)—dzm¢) (53; 529;) - (4.210)

3 Gy Fn . Koy \iv 2 (Cn
(BB R )

- E(1-K)Cp 2 —9: +§ (1-K)Cp, 2 +g(1 k)g;lmc,'n . (4.21d)

.

m=%c, : (4.21e)

where w,, is the disturbance to the z-component of the fluid velocity in the mushy zone.

Taking the curl of (4.21b) and the dot product of the result with I;, we obtain an equation

’

for the z-component of the vorticity in the mushy zone, mm' . After twice taking the curl of

(4.21b), the vertical component of the resulting equation is

aii €« Wy w5 1

wey o RO @m0 E W @ i
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. J0, &I'F
% (v:’ a o 0Zp, ‘YSC J.m
2 r

2F . - , _.aw, v
+ %g%vimcm + Py(®)V En Wy, "’%[Ph(ﬂa%m]*'vrﬁ(_qh)' (4.23)
. md

The disturbance energy equation in the solid is

m(?gf %T;'i) X V2T - (4.24)

The far-field disturbance boundary conditions are

w, -%k =0 =CL=T >0, (4.25a-e)
852 — oo, and s .
Ts Lo (4.26)
oz

as z —» —. The disturbance boundary conditions linearized about the nominal liquid/mushy-

zone interface position (z, = 1) are

¢ (XmYm:1.Tm) + q%ft—;ln[(xm.ym.rm) =0, (4.27a)
WL(X,Y.E,1) = W (Xm Yoo 14T m) (4.27b)

W (X,Y.5,1) _ dWp (X Y T,Tg)
3 P = oz , (4.27¢)

2 a%w(x, y E.1) _ %w, (xm,ym.1 cm)

(4.27d)
az? azm

gaa"wL(x y.k.1) aswm(xm.me am) , & d8(1) Mp(Xm Y1) (4.27¢)
a2 az3 & o, 3z '
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§ mi(x-yvglt) = mn:\(meYvatm) ’ (4.27”
2 émL'(x,y,E,,r) _ aco,;,(xrm.ymﬂ Tm)
§ = = oz, ' (4.279)
Tl’_(x-ylgvt) = g Tnl'l(xthmJ-tm) ’ (4.27h)
C (X y.E7) = ConlXm:¥me1Tm) - (4.27i)
T, (X,y.E, d>T ,
) L(Xaz 8.1 ¢ d;g;) ;X YenoTm) =
3T (X Yo 1 d?T,(1)_- .
m(xma:: Tm)+ d':'le' )nL(xm-ym'Tm)' (4.27))
. 2 )
gaCL(xéz'g'T) + §2d i:(gg) ﬂL(xm-Ym'tm) =
3C (X Ym» 1 d?C (1) _-
slindnlfnl o Cnn ymta). (4:276

and those at the mushy-zone/solid interface are

aw,,',(xm.ym,o,tm)
oZnm

wr'n(xvamvortm) = = (D,;,(Xm.ym.o.‘tm) = 0, (4.283'C)

Tm(0)

’ ’ r d 4
TS(XDYv0|1)+ § ns(xmvymvtm) = g Tm(xermnovtm) + § °—:;zn—ns(xm qu'Tm)o(4-28d)

dTs(0)
dz

CfX,¥,0,7) + dgméo—)ns'(xm.ym,tm) =0, © (4.28e)

g (Xm Y m) _K(5) AT (X Yo 10+ )
- "m

Y X3
r-¢ (xm:Ymrovtm) r- ¢(0) tm azm

‘aT' [) 901 ., — dzT O ’ .dz.r 0 ! X
e TS0 ey Tl O) iyt - K £ ki Yo

. (1—k')d—T—j°‘z‘:°—)¢'<xm.ym.o.rm) o (k) It 0) dB(0) oty v ). (4.281)

dz, Az

=

N & 6 W (A

g @ @ oW @m war o fm &N € «m wn
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4.4.3. Fourier Decomposition

We write the horizontal and temporal dependence of the dimensionless disturbance

quantities In the liquid and solid as exp(ot + ia,x + iayy), where a, and ay are the x- and

y-components of the horizontal wavevector, and o is the temporal eigenvalue. The

dimensionless disturbance quantities in the mushy zone are similarly decomposed as z-

dependent amplitudes multiplied by exp(omT + iay (X + iam'yy). Substitution into (4.18c-d),

(4.19), (4.20), (4.21c-e), and (4.22)-(4.24) yields

(L2+ dgz-—o)xL-d—:ZLWL=O '

in the liquid,

{Lam%Lzm*"é‘( 4. ‘Cm)LZm% - Py(9) arﬁ + l[Ph(a)dzi]}wm

S| dzy dzq, m
_2&9; dﬂm_ §3I‘FT afzne _ §2F$E a2 X = 0
& dzp, 4%Sc ™ PBge MM
1z d1 gz 1 2800 AWy,
[L2m+sc¢ a3 Ph(3) Sc""‘]n‘“* G0

(4.29a)

(4.29b)

(4.29¢)

(4.29d)

(4.29¢)

(4.29f)



L)

. dk (& . ., - .
[km(¢>L2m+ —gz-‘fl-d—‘z’:( k) g %+macpm<¢) - Letcn(®) cm]em

+[Le§(1-c;)‘3iﬂl+1%dzlm+(1-k‘

dt. LA
o Emm_rcm]o-Lea—zmmwm_o. (4.299)

d
) &

= & d 5.9 Y- T L
[¢ L2m+dzmdzm+g¢dzm+;(1 SF §¢am]xm eSmw,,

&0,
+[l£"l+§(1-k)é d L6, ]¢= 0 (4.29h)
dz, dzg ™ dzn dzm mom ' .
o, = '—p-'xm. (4.291)

in the mushy zone, and :
(K'L2+ Le%—Leo)es=0 (4.29j)

in the solid, where W, Q.. X, and @ are, respectively, amplitudes of disturbances to the
vertical velocity, vorticity, solute distribution, and temperature in the liquid, Wy, Qi Xms
8. and @ are, respéctively, amplitudes of disturbances to the vertical velocity, vorticity,
solute distribution, temperature, and volume fraction in the mushy zone, 8g is the amplitude
of the disturbance temperature in the solid, and L, = ¢%/dz2 - a2 and Ly = d%/0z,2 -a2 are
linear operators. Here a and a, are the dimensionless horizontal wavénumbers in the liquid
and solid, and mushy zone, respectively. Matching the solutions at the two interfaces requires
that the dimensional horizontal wavenumbers be the same. This gives the ratio of the
dimensionless wavenumbers as ap/a=§ = H,/H . A similar matching procedure for the
temporal dependence gives the relationship o/oy =§ = H/H,. |

The dimensionless disturbance quantities satisfy the boundary conditions
do(1)
o(1)+ B =0, (4.30a)
&z, -

W (§) = Wn(1), (4.30Db)

O = @ W@ g g e 1

wri ¢ ¢ ) @i oWl



( {l

1

Wi e G

GER

G

0L D E

LA

- I TR il

73

W, (8) _ dWq(1)

4.30
3 pre &, ( c)
2 WL @) d*W(1) (4.30d)
dz? &2
ad®W (&) _d*Wi(1)  E dg(1) dWp(1)
3 et dzE ‘S, d:m . (4.30e)
§Q(8) =Qpn(1) , (4.30f)
2dQ, (6) _ dap (1) |
3 premnt d'z"m ' (4.309)
8L(8) =& Opn(1) , (4.30h)
X(8) =Xm(1) | (4.30i)
de, ( dT de. (1) d°T. (1 .
L), d;(f)ﬁf d;l,(,)* d'z",é )g.. (4.30])
dx, (£) CLE) . _dxp(1) . Cr(1)
§ sz +§2dzi2 BL= d"z‘m + dz":é BLr (4.30k)
at the liquid/mushy-zone interface, and
w
wm(0)=df‘21ﬂ=nm(0)-o, (4.31a-c)
05(0)+ t T g 0, (0) + aﬂg?ss. (4.31d)
dC.(0 ~
xm(0)+—-g%ps=o, (4.31e)
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_ d*T(0) L+ dTs(0) . dT(0) dB(0) . 15
[km (0] SRl (1o k) S R R 0o

+, _, d6,(0) L +dBg(0) it dT.(0) y _
+Kkm (¢) az,, k e [(1 k )—m—dzm +r]°(°) =0, (4.31f)
where the constants Bg and B, are the amplitudes of the disturbed mushy-zone/solid and
liquid/mushy-zone interface positions, respectively. For the boundary conditions far from

the interface, we set all disturbances to zero

WL=%"=1L=9L=QL=O asz o, (4.32a-f)

%Lo 852 = —co. (4.329)

7 4.5. Numerical Solution

Our objective is to find conditions for which infinitesimally small disturbances decay
(Rg(c) < 0) for all but a finite number of critical wavenumbers (typically one), and are
neutral (Re(s) = 0) for thve criticalr waveﬁurﬁt;er(s). 'These cornrditions separate basic states
that are linearly stable from those that are not.

In the previous section, we formulated an eigenvalue problem for systems of ordinary
differential equations on two semi-infinite intervals (in the liquid and solid) and a finite
interval (in the mushy zone), coupled by boundary conditions at the deformable
liquid/mushy-zone and mushy-zone/solid inteffaces. For convenience, we truncate the
domain and solve the problem on a finite computational domain. With regard to the far-field

boundary conditions at z = 1 s, we set all disturbances to zeroatz=§+h
W=DW=X|_=8L=QL=0 atz=E+h, (4.338'9)

in the liquid and atz =-h
8s=0 atz=-h. (4.33f)

L gy ¢ U @ =0 &0 e o w o« my € 4 e« wi 1
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in the solid. In this work, we have taken h to be 10. (We have checked a number of our
results using larger values of h, and have found that eigenvalues do not change sensibly for h
larger than 10.) Since we use Chebyshev polynomials in our numerical solution, we scale the
liquid, mushy-zone, and solid coordinates by zy =(2z-2¢- hy/h, Zp =22,-h, and
Z3 = ( 2z - h)/h respectively, so that each region lies between -1 and +1. The resulting
system Is solved using a Galerkin technique developed by Zebib (1987).

We approximate the highest derivatives of the amplitudes of the disturbance velocity,
vorticity, solute distribution, and temperature in the liquid, the velocity, vorticity, solute
distribution, temperature, and porosity in the mushy zone, and the temperature in the solid,

by truncated sums of Chebyshev polynomials of the form

.
Witz = 3 ATy, (4.34a)
=0 |

N

0Pay) = Y BTy, (4.34b)
o
N

1Py = Y eTiay, (4.34c)
j=0
N

8%z = Y pTyzp), (4.34d)
o
N

Witlzp) = Y ETzy, (4.34¢)
o
N

2,2(zp) = ¥ T2y, (4.34f)
jar

xn(lz)(zz) = 2 GiTy(zo) , (4.34¢9)
=0
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N

9};2)(22) = Z HiTi(z2)» (4.34h)
=0
N

oMy = Y KTiz2) (4.341)
=0
N

8{P @) = Y, MT|(za) (4.34])
j=0

where Tj is the j-th Chebyshev polynomial and the coefficients A, B;, G D} E, Fp, c H;. K},
and M, are to be found. Representations of lower order derivatives cah be found by integrating
(4.34a-j) and using standard properties of Chebyshev polynomials. The procedure described
by Zebib (1987) reduces the problem to a matrix eigenvalue problem

As+cBs=0, (4.35)
where o Is the temporal eigenvalue, and the elements of the square matrices A and B depend on
the square of the horizontal wavenumber al= a§+ af,, the bulk mole fraction C,, and the other
dimensionless parameters.

In §4.6 we characterize the stability of the nominal one-dimensional basic stale'solution
in terms of the bulk concentration C,, and dimensionless solidification rate v, with all other
parameters taken as fixed. For each value of C_, we seek one or more critical values of y
(denoted by +') such that for y> ", disturbances decay for all wavenumbers, while for y <y,
disturbances grow for all wavenumbers in some range. In order to determine the critical
value(s) of v, we first determine the neutral curve (Y versus the wavenumber a) separating
those combinations of y and a for which all temporal eigenvalues o lie in the left half—plané (a
stable basic state) from those for which at least one eigenvalue lies in the right half-plane
(an unstable basic state). To determine the bulk concentration on the neutral curve for an
arbitrarily chosen wavenumber a, we first choose a value of y and compute all eigenvalues ¢
using (4.35). If all eigenvalues have negative real parts, v is decreased by half the previous

value: otherwise the new value of y Is chosen as twice the previous value. This process Is
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continued until we determine two values of y between which at least one sign change is
obtained in the real part of the least stable temporal eigenvalue. The dimensionless
solidification rate on the neutral curve is then determined using a bisection method.

To compute the critical dimensionless solidification rate y* at which instability first
occurs (i.e., the maximum on the neutral curve), we arbitrarily choose a wavenumber and
compute the corresponding y on the neutral curve using the procedure described above; We
then fix y at the value computed at the previous step and compute the eigenvalues o for a
discrete set of wavenumbers In a chosen range. From this set we select the wavenumber
corresponding to the o with largest real part. If this wavenumber is at an endpoint of the
chosen range, we extend the range to include the wavenumber corresponding to the largest
Re(c). We then select this wavenumber and determine the corresponding y on the neutral
curve. We continue this process until the relative change in ¥ is less than 1076, Spectral and

domain convergence results are shown in Table 3.

4.6. Results

The solutions of (4.29)-(4.33) depend on seventeen dimensionless parameters, as
defined in §§4.2 and 4.3. (The approximate solutions on the finite interval also depend on h.)
It is therefore not feasible to numerically explore the effects of more than a few combinations
of these parameters on the onset of convection. In this work, we have thus restricted
ourselves to the Pb-Sn system which, due to the low melting points of both components, has
been the subject of several experimental studies. The thermophysical properties of the liquid
and solid phases are as used by Coriell et al. (1980) at reference oonditio}\s corresponding to
pure lead at its melting point. (The diffusivity of Sn in Pb used corresponds to an infinitely
dilute solution.)

Figure 4.2(a,b) shows the dimensionless basic state solute mass fraction profiles in the
liquid and mushy zone for C_ = 0.2, y=2.59 x 1072, and ' = 7.12 x 10~2. (For Pb-Sn

alloys, these values of the dimensionless solidification rate and liquid-side temperature
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gradient correspond to V; =80 u sec-1 and G = 50 K cm-1)) Note that the solute profile
varies almost linearly with the vertical coordinate zp, in the mushy zone, within which
almost all of the solute variation is confined. In the liquid region adjacent to the
liquid/mushy-zone interface there is a compositional bounda'ry'layer, the thickness of which
is very small compared to the mushy-zone thickness. (Note that we have used different
length scales in the liquid and mushy zone. For the mushy zone the length scale is the
thickness H,,, the dimensional value of which is 1.685 cm for this combination of G, V|, and
C.., and for the liquid the length scale is the diffusion length, which in this case is 3.75 x 1073
cm.) For the same values of v, T, and C_, figure 4.2(c) shows the basic state porosity
profile. Figure 4.2(d-f) shows ¢(zy,) for three other values of C_. The volume fraction is
largest (¢ = 1) at the liquid/mushy-zone interface, and decreases monotonically to a nonzero
value at the mushy-zone/solid interface. These results show that as C_ increases, the
porosity distribution becomes more linear and its value at the mushy-zone/solid interface

increases monotonically. Figure 4.2(f) shows that the mushy-zone thickness (Hp = 0.527

cm) for C_ = 0.5 is much smaller (so that the liquid in the porous medium Is more mobile)

lhan for C_ = 0.1, 0.2 or 0.35.

~The dependence of the dimensional mushy-zone thickness, Hp, on the bulk mass fraction
and temperature gradient is shown in figure 4. 3(a c) for three sohdtfncahon rates. The
solid, dashed, and dotted curves in each flgure show Hyn for y=3.24x 1072
(V;=100psec™), 1.62 x 107% (V| = 50 p sec™?), 9.72 X 107% (V; = 30 psec™),
respectively. We see that H, is a strong function of I' (note that three different Ioganthmlc
scales have been used for H_,) and C_, depends relatively weakly on y, and assumes a
maximum near C_ = 0.2 for each combination of solidification rate and temperature gradient.
This maximum occurs because the composition difference AC ., = Ciy(1)-Cp(0) between the
top and bottom of the mushy zone reaches a maximum near C.= 0 2, and the mushy -zone
composition varies almost linearly wnh z, as shown in figure 4.2. As AC,, decreases to zero

as C_, approaches Cg, Hy, asymptotically decreases to zero. The decrease of Hy, as C,, decreases
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to the left of the maximum H,, is again due o the fact that AC,, decreases with decreasing C_,.
Forr=7.12 x 10~ (G = 5 K cm~1), figure 4.3(a) shows that Hn, Is a decreasing function of
y. ForT= 7.12 x 1072 (G = 50 K cm-1), the variation of H,, with y is much weaker (figure
4.3b), and for I' = 0.285 (G| = 200 K cm-1) is nearly independent of y (figure 4.3c). We
also note that the mushy-zone thickness decreases strongly with increasing temperature
gradient. |

For three values of C_, figures 4.4(a-c) show neutral curves (yversus a) for
r=7.12x1072 (GL= 50 K cm-1) and rotation rates Qo = 0 rpm (solid curve), 300 rpm
(dashed-dot curve), and 500 rpm (dashed curve). These neutral curves correspond to steady
onset of buoyancy-driven convection; we have found no evidence for the oscillatory onset of
instability in the dendritic solidification of Pb-Sn alloys. For given values of C_ and I, the
critical solidification rate (denoted by y*) is the maximum point on each neutral curve and
determines one point on the stability boundary. For y> ¥*, the one-dimensional dendritic
basic state solution is stable for all wavenumbers a, whereas for v <7’ it is unstable for some
range of a.

Figure 4.4(a) shows neutral curves (y versus a) for C.. = 0.1. At the extremum, the
critical solidification rate is y = 2.20 x 1.0‘2 (V; = 68 usec-1) and the critical wavenumber
irs a = 0.32 for the nonrotating case (solid curve). For Qo = 300 rpm the neutral curve
(dashed-dot curve) is displaced downward for all wavenumbers, indicating the stabilization
associated with rotation. Although the reduction In " (to v = 1.82 x 10"2, corresponding to
V) = 56 u sec-1) is significant (note the logarithmic v-scale), the effect is particulérly
strong at smaller wavenumbers (higher wavelengths). We also note that the critical
wavenumber has been shifted to a higher value. These effects will be discussed in §4.7. For -
Qo =500rpm, the critical solidification rate is reduced to y*=1.571x10"2
(V;=48.5usec-) and the critical wavenumber has nearly doubled to a = 0.65. For
C. = 0.2, figure 4.4(b) shows neutral curves (y versus a) analogous to those for C_ = 0.1.

The critical solidification rate assumes a maximum for this value of C.. (nearly independent
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of Q) [v" = 2.59 x 1072 (V; = 80.0 p sec™'), 2.30 x 1072 (V; = 71 u sec-'), and
1.86x 10"2(V, = 57.5 p sec-1) for 2, = 0, 300, and 500 rpm, respectively) and the
critical wavenumber Increases (a = 0.27, 0.41, and 0.55 for Qg = 0, 300, and 500 rpm,
respectively]l. The Coriolis acceleration again suppresses the onset of buoyancy-driven
convection with large wavelength as illustrated in figure 4.4(b). From the neutral curves
for C_ = 0.55 in figure 4.4(c) we see that aside from a slight shift downward to smalier
solidification rates [y* = 1.98 x 1072 (V; = 61.3 psec1), 1.75 x 1072 (V| = 54 p sec1), and
1.42 x 1072 (Vi =439 sec-1) for Q4 = 0, 300, and 500 rpm, reépectively], the results
are qualitatively similar to those for C, = 0.1 and 0.2. We note that the smallest stable range
of solidification rates is obtained for C_, = 0.2, which will be discussed below in connection
with the stability boundaries.

The vertical structure of the disturbance amplitudes of vertical velocity, temperature,
and vorticity in the liquid and mushy zone, solute mass fraction in the liquid, and volume
fraction in the mushy zone are shown In figures 4.5 and 4.6 for Q¢ = 0 and 500 rpm,
respectively. The disturbances shown correspond to the least stable mode (i.e., that with
least positive or most negative Re(c)). For graphical clarity, the same length scale (based on
mushy-zone thickness) is used in both layers. In these two figures, the mushy zone extends
from z = -1 to 0, and the liquid lies above. Since terﬁperature and composition in the mushy
zone are linearly related, only the structure of the temperature disturbance is shown.

ForC_=055andI'=7.12 x 1072, figure 4.5 shows the disturbance amplitudes for the
nonrotating case at the critical conditions y = 1.976 x 1072 (Vi=61p sec-') and a=0.32
(as determined from the neutral curve in figure 4.4c). Figure 4.5(a) shows that the vertical
velocity disturbance assumes a maximum just above the liquid/mushy-zone interface and
decays strongly in both layers. We also note that the depth of penetration of the convective
disturbance in each layer Is of the same order. Figure 4.5(b) shows that the structure of the
temperature disturbance is similar, except near the mushy-zone/solid interface where the

temperature disturbance does not approach zero. This is due to the fact that the boundary
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condition (4.31e) (derived from the dimensional condition (4.7d)) requires that the solute
mass fraction in the interdendritic fluid be equal to the eutectic mass fraction on the deformed
mushy-zone/solid interface. Thus, the relationship (4.29j) between the temperature and
solute mass fraction disturbances in the mushy zone requires that the disturbance
temperature be nonzero whenever that interface is deformed. Figure 4.5(c,d) shows that
disturbances to the liquid composition and mushy-zone volume fraction are largely confined
to very thin layers adjacent to the liquid/mushy-zone interface

For the same bulk mass fraction and temperature gradient as in figure 4.5, the vertical
structure of the same disturbance amplitudes, along with the vertical vorticity in the liquid
and mushy zone, are shown in figure 4.6 for the Qg = 500 rpm for the corresponding critical
conditions [y = 1.458 x 1072 (Vi=45 usec-') and a = 0.66). Aside from the considerable
increase in the critical wavenumber, only quantitative differences are appérent in the.
velocity, temperature, composition, and volume fraction disturbances compared to .the
nonrotating case. The vertical component of the vorticity in the liquid and mushy zone is
shown in figure 4.6(e) to be highly localized near the liquid/mushy-zone interface and to
decay strongly within each layer.

For Q5 = 0 and 500 rpm, we present our principal results in terms of a division of the
¥-C.. plane in figures 4.7-4.10 for four values of . These figures show the region (bounded
by the dashed curve) in which the one-dimensional dendritic solution exists along with
information regarding its stability and the stability of the one-dimensional plane-front
solution (which exists for all combinations of C..v. T, and Q). Each region is characterized
according to whether the one-dimensional dendritic solution exists (and if so, whether it is
stable), and whether the plane-front solution is stable with respect to morphological and
convective disturbances (Chapter 2; cf. Corlell et al. 1980).

Figure 4.7(a) shows the division of the v-C.. plane for I' = 0.285 (G = 200 K cm-1) and
Qo = 0 rpm. The one-dimensional dendritic solution exists in regions 1 and 2, and is stable

at sufficiently high solidification rates (region 1 ) and unstable for lower values of y (region
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2). (The turning point on the dendritic stability boundary (curve D) near C_ = 0.2 is
discussed in §4.7.) In regions 3-5, no one-dimensional steady solution of (4.8)-(4.13)
exists. The plane-front solution exists in regions 1-5, but-is unstable with respect to the
morphological instability (curve M) in regions 1-3. The plane-front convective stability
boundary (curve C) separates region 4, in which the plane-front solution is morphologically
stable but convectively unstable, from region 5, in which the plane-front solution Is stable
with respect to both morphological and convective disturbances. in summary, the one-
dimensional dendritic solution is stable in region 1 and the one-dimensional plane-front
solution is stable in region 5; elsewhere the plane-front solution Is unstable and the dendritic
solution either does not exist or is unstable.

For the same value of I' (0.285), fiéure 4.7(b) shows a similar division of the v-C.
plane for Qo = 500 rpm. The dendritic stability boundary is shifted to slightly smaller
values of y relative to the nonrotating case, constituting a small enlargement of region 1, in
which the dendritic solution is stable. As for disturbances to the plane-front solution, the
morphological branch is not sensibly changed, but the plane-front convective stability
boundary has shifted upward (Chapter 2), and so the range of bulk mass fraction and
solidification rate for which plane-front solidification is stable is significantly enlarged
relative to the nonrotating case. The greater degree of suppression of buoyancy-driven
convection that is achieved for the plane-front solution relative to the dendritic case is
discussed in §4.7.

Figures 4.8-4.10 show that the topology of the division of the v-C.. plane becomes more
complex as the temperature gradient decreases. For I = 7.12 x 1072 (G = 50 K cm-1),
figure 4.8(a-b) shows that for Qg = 0 and 500 rpm, a new region (6) exists in which both
the plane-front and dendritic solutions are stable. For Qg = 0 rpm, figure 4.8(a) shows that
for the plane-front solution, the morphological and convective stability boundaries have
shifted downward, and stable plane-front solidification is confined to a smaller part of the

¥-C_ plane than for T' = 0.285. However, for this smaller temperature gradient, dendritic
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solidification is stable for a larger range of y and C. relative to the I' = 6.285 case. For
I'=7.12 x 1072, the dendritic stability boundary intersects the dendritic existence curve
just above the latter's intersection with the plane-front morphological stability boundary.
Note also that the turning point on the dendritic stability boundary is more pronounced. For
Qg = 500 rpm, figure 4.8(b) shows that the regions in which only one one-dimensional
solution is stable (regions 1 and 5 for dendritic and plane-front solidification, respectively)
are considerably enlarged relative to the nonrotating case, whereas thé size of the region in
which both one-dimensional solutions are stable (region 6) is relatively unchanged, since its
boundaries (the existence curve for dendritic solidification and the. plane-front
morphological stability boundary) are unaitered by rotation. The effect of rofation on the
dendritic stability boundary Is considerably stronger than for I = 0.285.

ForI' = 3.56 x 1072 (G_L = 25 K cm~1) and Qo = 0 rpm, figure 4.9(a) shows that the
dendritic stability boundary intersects the dendritic existence curve well below the plane-
front morphological stability boundary, so that the part of the y-C_ plane in which the plane-
front solution is stable and the dendritic solution exists (region 6 in figure 4.8) has been
divided according to the stability of the dendritic solution. In region 6, the dendritic and
plane-front solutions are both stable, as for I' = 7.12 x 10™2, while In region 7, the dendritic
solution is unstable. We note that the mushy-zone thickness predicted in the lower part of
region 6 is exceedingly small; one can conceive of more sophisticated solidiﬁcétion models
(e.g., specifically predicting cellular solidification and imposing a threshold criterion on
mushy-zone thickness for dendritic solidification) that would not predict the existence of
dendritic solution in the lower part of region 6. For Qqy = 500 rpm, figure 4.9(b) shows
that reglon 7 disappears at the 'expense of fegion 6, consistent with the stabilizing influence
of rotation on dendritic solution manifested in the significant displacement of the dendritic
stability boundary.

ForT = 7.12 x 1073 (GL=5Kcem1) fiQure 4.10(a) shows for'the nonrotating case that

the dendritic solution exists in a part of the y-C_ plane (region 8) in which the plane-front
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solution Is morphologically stable and convectively unstable. Here, as in region 2, both the
dendritic and plane-front solutions exist, but neither is stable. The characteristics of the
other regions are unchanged. (We have not computed the boundary separating regions 6 and 7
forC_<1x 10-5 because, as discussed above, the basic state mushy-zone thickness predicted
by our model becomes exceedingly small as the bulk mass fraction decreases further.) Note

that the stable region of dendritic solidification becomes larger with decreasing temperature

gradient. For Qg = 500 rpm, figure 4.10(b) shows that region 8 has disappeared at the>

expense of regions 6 and 7, owing to the intersection of the dendritic existence curve and the
plane-front morphological stability boundary at a larger value of y than the latter's
intersection with the plane-front convective stability boundary. We also note that the
dendritic stability boundary intersects the dendritic existence curve at a value of C_ in excess
of 1 x 10°5. We also note that the degree of rotational stabilization for both the plane-front
and dendritic solutions is considerably greater than shown in figures 4.7-4.9 for larger

dimensionless temperature gradients.

4.7. Discussion
Our analysis of the conditions under which the governing equations (4.8-13) admit a
steady one-dir;\énsional dendritic solution for Pb-Sn alloys, and the éonditions under which
that solutiﬁon and the orne-dimensional plane-front solution are stable, allows for a more
complete discussion of the solidification regimes for binary alloys than has heretqfore been
possible. 7 _
That a one-dimensional steady dendritic solution exists for only some combinations of the

temperature gradient, solidification rate, and bulk mass fraction is not surprising since this

basic state Is determined as the solution of a nonlinear ordinary differential equation system,

for which a solution need not exist. The boundary in the parameter space within which the
dendritic solution exists Is detefmingd by two constraints. One is that the liquid volume

fraction at the liquid/mushy-zone interface is unity and cannot exceed that value within the
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mushy zone. Hence, the vertical derivative of the volume fraction at the liquid/mushy-zone
interface should be nonnegative. This condition is satisfied in the region above the lower
branch of the dendritic existence curve. The other constraint is that the solute mass fraction
in the interdendritic fluid cannot exceed the eutectic composition, Cz. The interdendritic
solute mass fraction in the basic_state depends monotonically on the vertical coordinate z.
Therefore, if the solute mass fraction at the liquid/mushy-zone interface Is less than Ce. this
constraint can be satisfied everywhere in the mushy zone. Below the upper branch of the

dendritic existence curve, the latter constraint is satisfied, and the mushy-zone thickness

. asymptotically approaches zero as this branch of the curve is approached from below. Hence,

a one-dimensional dendritic solution exists only in the region between the two branches of the
dendritic existence curve.

When the plane-front morphological stability boundary is crossed, a cellular interface
develops. As the solidification rate increases past the critical value, the cells becomes
deformed and deepen. The formation and evolution of the cells have been Studied theoretically
by Ungar & Brown (1984) and Ungar et al. (1984). For still larger 'solidification rates,
dendritic solidification occurs, with dendrites typically consisting of long vertical stems with
secondary and tertiary branches. The development of the cellular interface and transition to
dendritic solidification were observed experimentally by Trivedi (1984) and Venugopalan &
Kirkaldy (1984) We thus conclude that the part of reglon 3 (cf. figures 4.7-4.10) below
the lower branch of the dendritic existence curve is a region of cellular solidification, in
which the plane-front solution is morphologically unstable and the dendritic solutibn does not
exist. The experimental evidence showing that dendritic solidification occurs when either the
bulk mass fraction or solidification réte is increased for fixed temperature gradient is
consistent with the location and character of the dendritic regions 1 and 2 in our results.

For a given value of the bulk solute mass fraction, there exists a critical solidification
rate above which the one-dimensional dendritic solution is stable with respect to

infinitesimal disturbances. For all values of I, and Qq dendritic solidification Is least stable
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with respect to buoyancy-driven convection for solute mass fractions near 0.2 (the value at
which the dendritic stability boundary has a turning point). This occurs because for this
value of C_ the mushy-zone thickness Hp, and the composition difference AC,, attain their
maximum values independent of temperature gradient and solidification rate (cf. figure 4.3
and accompanying description). If the Rayleigh number Rm we define for the mushy zone is
proportional to ACmHm (Worster 1992), maximum destabilization for the Pb-Sn system
occurs for C_ near 0.2. Fowler (1985) defined a R_ayleigh number R= (o —at) m po9K/Vy,
where K is a monotonically Increasing fz;mcﬁon of the permeability, andl showed that there ié a
critical value R < 1/(Cg-C,) such that if R < R. , then dendritic solidification is stable with
respect to small disturbances. Note that for Pb-Sn, R, assumes a minimum near C_ = 0.2.
Thus, there is a critical solidification rate above which the condition R < R, is satisfied, and
dendritic solidification Is convectively stable. Our numerical results are thus consistent with
the approximate analytical results of Fowler (1985) and Worster (1992).

We also note that the stable range of yand C_ grows as T decreases. This is due to the fact

~ that liquid volume fraction (and hence permeability) decreases with decreasing temperature

gradient, so that the mushy zone becomes more immobile and the onset of convection is
suppressed. That is also consistent with Fowler's result, since the Rayleigh number
decreases as permeability decreases.

The amplitudes of the disturbance to the vertical velocity assume a maximum in the
liquid ahead of the liquid/mushy-zone interface, and decay strongly in each region.
Buoyancy-driven convection is largely confined to the liquid ahead of the interface and to the
part of the mushy zone where the fluid is most mobile (near the liquid/mushy-zone
interface). The interdendritic fluid farther from the liquid/mushy-zone interface is
essentially stagnant. For I' = 7.12 x 10’2 (G =50K cm-1), the critical wavenumber range
is approximately 0.25 < a < 0.35 (depending on C..) for the nonrotating case (figures 4.4a-
c). The corresponding convective wavelength of 0.06 cm is small compared to the mushy-

zone thickness (Hy, = 0.311 cm for C_ = 0.55), but large compared to the diffusion length for
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a typical solidification rate (4.92 x 10~ em for Vi = 61 psec-! at the critical value of v).
We believe that this convection corresponds to the mushy layer mode described by Worster
(1992). Rotating the system at Qo = 500 rpm suppresses the convective instability at
relatively small wavenumbers and nearly doubles the critical wavenumber, so that the
wavelength of the buoyancy-driven convection is reduced by almost half relative to the
nonrotating case.

That a one-dimensional dendritic solution exists under conditions for which plane-front
solidification is linearly stable with respect to morphological disturbances might at first
seem inconsistent. However, our result implies no such inconsistency, because the plane-
front stability analysis (Coriell et al. 1980) is restricted to infinitesimal disturbances. In
fact, in part of the region where the plane-front solution is linearly stable, it is known
(Wollkind & Segel 1970; Alexander ef al. 1986; Ungar & Brown 1984) to be unstable with
respect to a subcritical (“finite amplitude”) instability. Thus, in the region in which the
plane-front solution is linearly stable, it is not surprising that we also find a one-
dimensional dendritic solution.

The remarkable suppression at modest rotation rates of plane-front convective
instability in Pb-Sn binary alloys was discussed in Chapter 2 in terms of the well known
Taylor-Proudman mechanism, described by Chandrasekhar (1961). The Coriolis
acceleration also inhibits the onset of buoyancy-driven convection in the dendritic case, but
to a lesser extent than for plane-front solidification. This is because the effective Taylor
number (a dimensionless measure of the Coriolis acceleration) is smaller in the dendritic
case, due to the larger "effective viscosity" of the interdendritic fluid in the porous medium.
The far greater suppression of dendritic solidification at smaller wavenumbers than at larger
wavenumbers, and the shift of the critical wavenumber to a higher value (both shown In

figure 4.4) are expected on the basis of the character of the Taylor-Proudman mechanism.
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CHAPTER 5

Conclusion

For liquid Pb-Sn undergoing plane-front solidification, a remarkable suppression of the
onset of buoyancy-driven convection is obtained at low solidification rates (more than a
hundredfold increase in the critical value of C.atV,=1 u sec-! by rotating the layers at 500
rpm for the two values of G_considered). The mechanism of this stabiliza;lgn;, is discussed in
terms of the Taylor-Proudman theorem, in Chapter 2. It is not surprising that the
morphological instability is unaffected by rotation. The morphological instability occurs at
very short wavelengths, so the motion is almost perpendicular to the solidification front (lL.e.,
aligned with the axis of rotation). Hence, ihe Coriolis acceleration does not sensibly affect the
morphological instability. The predicted inhibitory effects of rotation on convection are
discussed in terms of previous experimental and theoretical studies of the effect of rotation on
the onset of buoyancy-driven convection in single-component fluids heated from below and in
binary fluids subject to thermal and solutal stratification.

For mercury cadmium telluride Hg,.,Cd,Te, the liquid density does not depend
monotonically on temperature for some range of the bulk solute composition. For certain
combinations of the operating parameters (solidification rate, nominal liquid-side vertical
temperature gradient, and bulk solute concentration) a density maximum occurs at a
temperature greater than the liquidus temperature and there exists a sublayer adjacent to the
solid-liquid interface in which temperature gradient is destabilizing. This has profound
effects on the nature of neutral curves, eigenfunctions, and the stability boundaries.

The morphological instability is completely insensitive to the net density stratification
in the liquid, and Is relatively insensitive to the variations of temperature and composition
outside a relatively thin layer adjacent to the interface. This is evident from a comparison of
the neutral curves and stability boundaries for Hg,.xCd,Te to those for Pb-Sn. On the other

hand, the onset of buoyancy-driven convection depends strongly on the nature of the
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stabilizing or destabilizing temperature and solute gradients in the liquid, as well as on the
diffusivities of the stratifying agencies. For Pb-Sn, the onset of buoyancy-driven convection
is monotonic in time (corresponding to the fingering regime of doubly-diffusive convection),
while for Hg, ,Cd,Te the motion is overstable or oscillatory in time (the diffusive regime).
This Is discussed in terms of the standard "parcel" argument for a linearly stratified doubly-
diffusive fluid (Turner 1973, page 251) in Chapter 3.

In contrast to the case where the density depends monotonically on temperature and
composition (e.g., the lead-tin alloys considered by Corlell et al, (1980)), for Hg, ,Cd,Te
there exists a critical value of the bulk mole fraction below which plane-front solidification
Is unstable at all solidification rates. This differs from the Pb-Sn case in that for Pb-Sn,
plane-front solidification at any C_is linearly stable for all sufficiently small solidification
rates. Moreover, when the density varies nonmonotonically, there can exist a critical value
of the dimensionless solidification rate y(denoted by ¥°) such that for y> Y', plane-front
solidification is unstable for all values of the bulk mole fraction C... In this case, for y < y*,
there is a finite range of C_ for which the plane-front solution is stable. This latter result
differs from the Pb-Sn case, for which at all dimensionless solidificatioh rates, plane-front
solidification Is stable for all values of C_ lying below some critical value.

For Hg,.,Cd,Te, the disturbances associated with the oscillatory onset of buoyancy-driven
convection are largely confined to that thermally unstably stratified sublayer. The results
should be expected to apply to the solidification of other binary or multicomponent liquids In
which (9p /9T )(3T /32) changes sign within thg layer.

The effect of rotation on the stability of plane-front solidification of Hg,..Cd,Te
pseudobinary liquid has also been Investigated. Similar to the case for Pb-Sn alloys, the
onset of buoyancy-driven convection is inhibited significantly by modest rotation rates, but
the morphological instability is not sensibly altered.

In Chapter 4, we show that a one-dimensional steady mushy-zone solution exists for only

some combinations of the temperature gradient, solidification rate, and bulk mass fraction.
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This Is not surprising since this basic state is computed from a nonlinear ordinary
differential equation system for which a solution need to exist. The one-dimensional mushy-
zone solution is stable for sufficiently large solidification rates for all wavenumbers. At
lower solidification rates, it Is unstable with respect to disturbances which grow
monotonically in time. We also found that the dendritic basic state solution exists in part of
the region where plane-front solidification is linearly stable with respect to morphological
instability. This does not imply any inconsistency between our models of plane-front and
dendritic solidification, since the plane-front stability analysis is restricted to Infinitesimal
disturbances. In part of the reglon where the plane-front solution is linearly stable,
previous studies have shown that it is unstable with respect to subcritical instabilities.
Hence, it is not surprising that we find a one-dlrhensional dendritic baéic state solution in the
region where the plane-front solidification is linearly stable.

We have also found that the Coriolis acceleration suppresses the onset of buoyancy-
driven convection during dendritic solidification of Pb-Sn binary liquids. The relative degree
of stabilization is less than for plane-front solidification. This is due to the fact that the
effective Taylor number (a dimensionless measure of the Coriolis acceleration) is smaller in
the dendritic case, due fo the larger efféctive viscosity of the fluid in the porous medium.

Even though the analysis in this dissertation is restricted to horizontally unbounded fluid

layers, the predictions will be qualitatively correct for finite aspect ratios (ratio of mold

radius fo height) if the parameter Q% Ro/g (a Froude number, where Rg is the mold radius)
is sufficiently small, as discussed in detail in Chapter 2. For the onset of thermal convection
in rotating water or mercury layers heated from below, the excellent quantitative agreement
between classical linear stability analysis for a horizontally unbounded layer and
eiperimental work for finite aspect ratios provides a clear demonstration of the potential of
the Coriolis acceleration to suppress buoyancy-driven convection in a rotating fluid.

The relatively modest rotation rates required to significantly Inhibit the onset of

convection in the Pb-Sn and Hg,.,Cd,Te systems make the proposed method an interesting
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candidate for a program of laboratory experiments. Experiments might be conducted using a
com;;letely filled cylindrical mold, thermally insulated on the vertical surface, and mounted
axisymmetrically on a rotating horizontal turntable. If the liquid at the top of the rotating
mold is in contact with a gas or vacuum, it will have a nearly paraboloidal free surface, on
which the elevation above the point on the axis of rotation is Az = Q%ral(2g). Although this
configuration is consistent with rigid-body rotation, it also leads to a nearly paraboloidal
solid-melt interface. For high rotation rates or large mold radius, this will in turn lead to
significant radial variations in the solidified alloy. Also, cooling at the radial boundary leads
to a radial temperature gradient, which in turn leads to significant centrifugal effects.
Therefore, the present results can not compared to the experimental works in which strong
radial variations in macrosegregation are observed in the solid.

In our models for both plane-front and dendritic solidification, the domain considered is
horizontally unbounded and, the liquid and solid extend venrtically 10 z = e and z = —oo,
respectively. The interfaces in the basic state are assumed to be nominally planar. We also
assume that solidification occurs sufficiently fast at the growing interface or in the mushy-
zone so that the solid-liquid interface for plane-front solidification, or the entire mushy-
zone for dendritic solidification can be considered to be in thermodynamic equilibrium. Thus
nucleation and other kinetic effects are neglected in our models.

We have also assumed that the solid is thermally isotropic, and that for plane-front
solidification, the liquid-solid interface is isotropic. The effects of boundary thermal
anisotropy have been dealt with in Rayleigh-Bénard problem by Pearlstein & Oztekin
(1989), while anisotropic surface tension has been considered for plane-front solidification
by Voorhees et al. (1984). Both of these effects can be incorporated easily into the present

work.
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Appendix A
The numerical solution of (2.17)-(2.19) can be obtained using a spectral Galerkin
technique developed by Zebib (1987). We approximate the highest derivatives of the
amplitudes of the disturbance velocity, vorticity, solute distribution, and temperature in the

liquid, and temperature in the solid, by truncated sums of Chebyshev polynomials of the form

J
Wiz, = Y KT, (Ata)
kO |
J
(0(2)(22) = ZMjTj(Zz)- . (A1b)
j=0 |
J
1P zy) = Y PN, (Alc)
j=0
J
8Py = YaTe), (A1d)
& ,
2 d )
8Py = Y ZTizy), - (Ate)
j=0

where the coefficients Kl M Pi' Qj. and Z; are to be found. Representations of lower order
derivatives can be found by integrating (A1a-e) and using the following standard properties

of Chebyshev polynomials

g dTo(2) Ay dToq(2)
2@ =7 T 1 & (A2a)

2z To(2) = anTe1(2) = An4Thaa(2) (A2b)
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where o, =4, =0ifn<0,0p=2,4;=1,and a, =2, = 1if n > 0. The Integration constants
in the lower-order derivatives can be determined as functions of K;, M;, Py, Q,-, and Z using the

boundary conditions (2.19), leading to

J  J+d4-m
wiM(z,) = Z Z [W ™K 4 y125 ™M+ y32 1™ P+ y44 ) 0MQ 4y, 6™ Tizp) +
o 0
J+3-m
Z 91, ™B Ti(z), (A3a)
J_ Je2on
0M(zy) = Z 2 [0 ™M} +y21 1K)+ y23 5 P+ y24 Q)+ y,6"Z)] Ti(z2) +
0 }=0 ‘
J+1-n
(Mg T A3b
g2; "B Tjz2), ( )
J J+2-n
1 M(zp) = z Z [, ]i(n)Pj+Y31ji(n)K]"’yazji(n)Mj+Y34ji(n)Qj+Y35]i(n)Zj] Tjz2) +
=0 0
J+1-n
Y 058 Ty, (A3c)
=0
J J+2-n
8 Mz, = Z z [oL3™ay+yas MK+ Yazi"M)+Vas P+ y45,{M2Z]] Tyz) +
0 0
J+1-n
D 948 T2, (A3d)
=0
J  J+2-n
85Ny = 2 Z [05 1™Zj+y51 ™K+ yo2 ™M)+ y53 P+ ys4 Q)] Ty(z) +
=0 =0
J+1-n
(g T A3
gsj BTz, (A3e)
0

for m = 0,1,2,3 and n = 0,1. Substituting (A3a-e) into the governing equations and taking

inner products with

J+4 J+2 J+2 J+2 J+2
ZWjI(O)T]' Z(Djl(o)T]. ZxL II(O)T]' ZOLJI(O)T]' and 295 ]i(O)T]' (Ad4)
s j=0 j0 o =0
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respectively, we reduce the solution of (2.17)-(2.19) to a matrix eigenvalue problem
As+cBs=0, (A5)
where o is the temporal eigenvalue, A and B are square matrices, and s=[K;, M;, Pj. Q,,Z], a]T
is thé eigenvector. The choice (A4) eliminates the spurious eigenvalues frequently
encountered in the solution of eigenvalue problems for ardinary differential equations when

using basis functions not satisfying the boundary conditions.
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Appendix B

To the best of our knowledge, the only data available for the density of liquid Hg,.Cd,Te
are those of Mokrovskii & Regel (1952) for pure HgTe, and Chandra & Holland (1983) for
CdTe mole fractions in the range 0 < C < 0.2. On the basis of the latter, three equations of
state (Chandra 1985; Antar 1987, 1988, 1991; Apanovich & Ljumkis 1991) have been
proposed for liquid Hg,_xCd,Té. Unfortunately, for C = 0, Chandra & Holland's data differ
systematically from those in Mokrovskii & Regel's well-known paper from loffe's Physico-
Technical Institute in St. Petersburg. Chandra & Holland refer to two other papers by Regel,
but make no reference to his work with Mokrovskii on the density of HgTe.

Although the relative difference between the C = 0 data of Chandra & Holland and
Mokrovskii & Regel is only about 0.65%, the average difference amounts to about 60% of the
density variation reported by Mokrovskii & Regel over 963 K < T < 1173 K énd to about
75% of the variation reported by Chandra & Holland over 953 K < T < 1073 K. Moreover,
the C = 0.1 data of Chandra & Holland show density extrema at three temperatures, whereas
all other data vary either unimodally (for C < 0.05) or monotonically (for C > 0.1) with
temperature. Finally, Chandra & Holland reported data only for the Hg,.,Cd,Te system,
whereas Mokrovskii & Regel's (1952) density measurements for other liquids are in good
agreement with those of Lucas & Urbain (1962) and Lucas (1964) for germanium, and of
Glazov, Chizhevskaya & Evgen'ev (1969) for germanium, gallium antimonide, and indium
antimonide, thusrallowing an independent assessment of accuracy.

VV\VIe' héve thﬁs chosen to regard the C = 0 data of Mokrovskii & Regel as accurate, and have
undertaken to recalculate the data of Chandra & Holland on that basis. Chandra & Holland
measured the liquid height A in a capillary tube, from which their reported liquid volumes
Vcw were inferred using a linear equatibn of the form VérH = 5;4 + 8,. Based on discussion
with Chandra (private communication), we hypothesize that the primary source of error is

in either the determination of A or the determination of ¥ from A. Thus, we have recalculated
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Chandra & Holland's data (excluding their measurements for C = 0.1 at the two artifactual

extremal temperatures of 1053 K and 1083 K) by using
Vic=S1VcH + S2 (B1)

and regarding s, and s, as unknowns, which we determine by minimizing the sum of the

squared differences of the specific volumes

& "Z (o5 ™ 7] (B2)

at C = 0, where pygr refers to the experimental HgTe density data of Mokrovskii & Regel,

Pre= Mugre/(S1VcH+ S2) is the recalculated density of Chandra & Holland for C = 0, the mass
of pure HgTe used by Chandra & Holland for C = 0 Is mygye = 62.6457 9, and Vy is the HgTe
volume reported by Chahdra & Holland at each temperature T; at ‘which they measured the
density for C = 0. The sum E, Is minimized by sy = 0.9935 and s; = 4.553 x 107% cm?.
Noting that the volumes reported by Chandra & Holland are on the deérry of 10 cm3, we see
that (B1) is nearly equivalent to multiplying the data of Chandra & Holland by a constant.
This allows recalculation of Chandra & Holland's reported volumes (for all but the two
data points cited above) according to (B1). Recalculai;d values of Chandra & Holland's data at
all mole fractions are used to fit by least-squares a bivariate polynomial of the form (3.7a)

in the temperature range of their density data. The coefficients by are

byy = 8.108 gem’ bo; = -1.578 x 107* gem K™
bpp = -1.046 x 107° g cm3K2 bos = 4.268 x 107 gem®k?®
bos = 1.983 x 107'° g om 3K byo = -2.419 gem?

by = 1.757 x 107° g cm3k! byp = 1.145 x 105 gem®K?
bys = 4.687 x 107°  gem?K® by = -2.181 gem®
by, = 5.885 x 107 gemK byy = —2.049 x 107¢ gem®K?
by = 8.892 gcm® by = 4.436 x 1072 gemK™.
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Far from the liquid-solid interface, however, the liquid temperature exceeds the
maximum temperature (T,,(C)) at which p_ data are available. For T > Tmax (C). the liquid
density is approximated by a linear function of temperature (3.7b). The coefficients dy In
(3.7b) are computed by matching the density and its temperature derivative at T = Tmax (C)

and are found to be

doo = 8.119 gem® dio = -2.435 gcmS
dyp = -1.985 gcm® dyp = 10.48 gem3
doy = -7.703 x 107 g em3k? dyy = 2753 x 1072 gem3k!

dyy = -1.358 x 1072 g cm3k! day = 1.302 x 1072 gem3k!

The coefficients r; in (3.8) are computed by a least-squares fit of the maximum
temperatures at which Chandra & Holland reported the density for different CdTe mole

fractions. The values of r; are

=1073 K 1 =2917K  r,=-2250 K  r, = 8333 K.

The results are shown in figure B1. Solid curves represent liquid density determined

from (3.7a,b) as functions of temperature for C = 0, 0.05, 0.1, and 0.2. Filled circles

denote the C = 0 density data reported by Mokrovskii & Regel (1952). The other symbols

denote density data reported by Chandra & Holland (1983). For 0 < C < 0.16, we obtain a
unimodal density variation with temperature. (At the value of C at which p becomes a
monotonic function of T, the maximum occurs at the liquidus temperature.) Although‘ the
C= 0 density data of Chandra & Holland are consistently lower than those of Mokrovskil &

Regel, the density maxima occur at nearly the same temperature.
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Appendix C

The thermophysical properties of the liquid and solid (other than the density of the
liquid) are taken as constants evaluated using the functional forms shown below at the bulk
mole fraction and oorresponding liquidus or solidus temperatures (Tjq and T,q).

We have taken the density of solid Hg,. ,Cd Te as

S S —;— ' (C1)
pS PcdTe PHgTe

where { = CMW‘a /M is the CdT e mass fraction, the molecular weights of CdTe and HgTe are
MCdTe = 240 g/mol and MHgTe = 328.2 g/mol, M = CMCdTa + (1 C)MHQTO' and PcdTe and

PHgTe 8r€ the solid densities of pure CdTe and HgTe, respectively, represented by

PcdTe = Ao+ MT, (C2a)

PHgTe = %0 +6,T, (C2b)

where the coefficients A; and ¢; are determined by least-squares fits to the experimental data
of Glazov, Chizhevskaya & Evgen'ev (1969) and Mokrovskii & Regel (1952), respectively.

The values of A, and ¢; are

Ao = 5.820 gem™ A, =-8.095 x 10°° gcm> K
4o = 8.201 gem™® ¢, =-1.230 x 107 gem® K",

The viscosity is represented over the entire range by

v=1x102 exp(@o + <b,/T) cm?/sec, (C3)

where the coefficients &g = -3.401 and @, = 3445 K are computed by least-squares fit to the

experimental data of Glazov, Chizhevskaya & Glagoleva (1969) for pure CdTe. Due to the lack
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of experimental viscosity data for HgTe, we use (C3) for the viscosity of Hg,.,Cd,Te,
independent of composition.
The thermal diffusivity of liquid and solid Hg,.,Cd,Te are approximatéd by functions of the

form
xL = (0p + ©,C "2 + @,C) IN(T/K) - (Qy + 2,C"2 + Q,C) , (C4a)

2
xs-j;o, T/ (Soi + 84,2 + 8,C) (C4b)

where the coefficients

wp = 0.104 cm?sec™ ©; = -0.146 cm?sec™
©, = 0.118 cm?Zsec™! Q, = 0.668 cm?sec™
Q; = -0.941 cm?sec™ 0, = 0.783 cm?sec™
Soo = -5.945 x 107  cm2sec™ Sio = 1.698 x 1072 cm2sec™
Spo = -0.114 cm?sec™ Sor = 7.148 x 10°% cm2sec™ 'K’
Syy = 1.646 x 107*  cm2sec”'k! Spy = 4.475 x 1074 emsec 'K
Spz = ~7.829 x 1078  cmZsec K2 Siz = 1.969 x 10~7 cm®sec K2

Sop = -4.120 x 1077 em?sec”'K2.

are determined by least-squares fit to the experimental data of Holland & Taylor (1983).
The specific heat of liquid Hg,.,Cd,Te is represented by
2 24
L (T.C) =|Z 12‘0 q;C'(T-943K) . (C5)

=0

The coefficients q; are found by least-squares fit to the calculated specific heat of Su (1986).

The values are

- 6508  JK'mor =~0.101 J K2mol!
Y00 1
Qoz = 3.961 x 1074 J K2 mor Qo = 1.648 J K mor™!
Qi =7.004 x 107° JK2Zmol™ O = -5.044 x 1072 JK'mol™,
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where we have used the relation 1 mol = 2 g-atom for the pseudobinary system Hgy..Cd,Te to
convert Su's data (in cal K™ g-atom™") to J K~ mor™".

The specific heat of solid Hg,.,Cd,Te is taken as

Cp.s = Cp.s,HgTe (1-C) + Cp.5,0d1e C » (C6)

where the temperature-dependehce of the specific heats of pure HgTe and CdTe is found from

Mills (1974) to be

Co s HgTe = [52.09 + 9.08 x10° (TK)] J K" mol™ (C7a)

Cps.cate = [40.0 + 33 x1072 1/K)] J K mor™*. (C7b)

The latent heat of fusion is approximated by
L(C) = (1-C)lngre + Clcdte » (C8)

where data for the pure components are given by Mills (1974) as Lygre= 3.6x10*J mor!
and Legre = 4.48x 1 04 J mol!. The interfacial energy is estimated by comparing Hg,..Cd,Te
and InSb (Seidensticker & Hamilton (1963) compared Ge and InSb to estimate the interfacial

energy of InSb)

e, oD
c =0 -2 ' Co
Hg1.xCdyTe = NS0 (a%Lg,_,cd,n L Jinsb (¢9)

where the latent heat of fusion per unit volume for Hg,.,Cd,Te is taken to vary linearly with
solute mole fraction (see (CB8)), 8y = 6.47597 A for InSb, and a5 = 6.465 A is used for
Hg,..Cd,Te ir'\d'eperndent of compositio'h (GIazov, Chizhevskaya & Glagoleva 1969). Here the
surface tension is taken as o, ¢, = 8.5 x 107 J cm™2, and the latent heat of fusion per unit

volume of InSb is L = 1.20 x 103 Jem™3. The capillary coefficient is then computed from
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T.

¥ =09, .,Cd,Te ",I_m '

(C10)

where Ty is the liquidus temperature for a given bulk mole fraction of CdTe in the liquid.

The liquidus and solidus temperatures

Tiiq = (943 + 681 C - 372 C3) K (C11a)
and ,
Teol = (943 + 202 C - 150 C2+ 324 C¥) K, (C11b)
liquidus slope

m, = (681 - 745 C) K , (C12)
and segregation coefficient
k =C(030-224x 103 K" T, + 267 x 10°K2T2Z,)™"  forC>0.1, (Ci3a)

k = 3.74 for C < 0.1, (C13b)

4

as functions of CdTe mole fraction were determined by least-squares fits to the experimental
data of Szofran & Lehoczky (1981).
Finally, the solute diffusion coefficient is taken as D_ = 5.5 x 10° cm%sec, the value

most commonly used in the literature (see e.g., Kim & Brown 1989).
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Appendix D

Our model of flow in thé mushy zone is based on the observation that the primary
dendrites formed during dendritic  solidification of binary alloys are columnar and oriented
parallel to the nominal solidification direction. We treat the dendritic region, saturated by
interdendritic fluid to be a porous medium the permeability of which is taken to be
orthotropic with horizontal isotropy. The functional dependence of the components K;, and K,
of the permeability is determined from the calculated drag coefficients of Sangani & Acrivos
(1982a) and Drurhmond & Tahir (1984) for flows normal and parallel to the axes of
cylinders in hexagonal and triangular arrays, respectively. The asymptotic 'solutions for

concentrated and dilute arrays (solid curves in figure D1)

;51 - ‘_4—;‘2 (Ing™%2-0.745+ 9-0.25 9% for 9 < 0.3, (D1)
1/1275/2
%=ﬂ—?%i?[1-(5f:) 2] for g > 0.7, (D2)

are derived by Sangam& Acrivos (1982a), where @ =1 - ¢ is the solid volume frac:tiron,Wq),m,l,t
is the maximum value of the solid volume fraction when the cylinders touch, and A Is the
primary dendrite arm spacing. The open circles are permeability values calculated by
Sangani & Acrivos (1982a) for flow through a hexagonal array of cylin'ders.r and mra't(:h the
asymptotes (D1) and (D2) for sufficiently large and small ¢. Hence, for 0.3 < qi < 0.7, we

use a functional form

Ky _1-9 -1/2 2 ‘
2= an (Incp -b+ (p-0.25<p) for‘q><0.3, (D3)

similar to (D1), and determine b = 0.7508 by least-squares fit to the calculated drag

coefficients of Sangani & Acrivos (1982a). Our fit is shown for 0.25 < ¢ < 0.725 by the
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dashed curve in figure D1. The dotted curve of figure D1 shows the permeability calculated
by Sangani & Acrivos (1982b) for simple cubic arrays of spheres.
For the normal component of permeability, we use the results of Drummond & Tahir

(1984) for flows paraliel to the axes of cylinders in triangular arrays

2 .
%z = -(l“Tgn)L?(-|n¢-1.4975+ 2(p—0.5<p2—0.002514q)6) for p < 0.7, (D4)
Kv 1- 2 on 1/2
=-9" 1y qs{ 254, .. forp>0.7. (D5)
Az 10 ((pa\/?)

The primary dendrite arm spacing A for Pb-Sn systems was determined by Mason et al.
(1982) using experimental data over a wide range of temperature gradient G_ and

solidification rate V; by the relationship
A=AG 2, (D6)

where the coefficients A and B given by Mason et al. (in their table 2) are functions of

solidification rate. In our calculations, we have determined A and B by interpolation.

PR,
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Figure 2.1. Schematic depiction of plane-front solidification
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